Members Login
Large Eddy Simulation of Transitional Separated Flow over a Flat Plate and a Compressor Blade

Large Eddy Simulation of Transitional Separated Flow over a Flat Plate and a Compressor Blade- March 2012

Sylvain Lardeau, Michael Leschziner, Tamer Zaki



The ability of Large-Eddy Simulation (LES) to predict transitional separation bubbles is investigated, with particular emphasis being placed on the response to free-stream-turbulence. The principal objective is to quantify the penalties, relative to Direct Numerical Simulations (DNS), that arise from the coarser resolution and the use of subgrid-scale models. Two flow configurations are considered: a flat-plate boundary layer, subjected to different free-stream-turbulence levels, ranging from 0 to 2% (at the point of separation), and the flow over a compressor blade at 0 and 3.25% turbulence levels. For both cases, results are compared with DNS data. A number of challenges associated with the use of LES in transitional flows are addressed, including the representation of the decay of free-stream turbulence and the mesh resolution needed for a correct description of the growth of instability waves in the early stage of transition.


  1. Abdalla, I., Yang, Z.: Numerical study of the instability mechanism in transitional separating-reattaching flow. Int. J. Heat Fluid Flow 25(4), 593–605 (2004) CrossRef
  2. Alam, M., Sandham, N.: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000) CrossRef
  3. Brandt, L., Schlatter, P., Henningson, D.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004) CrossRef
  4. Comte, P., Lesieur, M., Lamballais, E.: Large-and small-scale stirring of vorticity and a passive scalar in a 3-D temporal mixing layer. Phys. Fluids A: Fluid Dyn. 4, 2761 (1992) CrossRef
  5. Dahlström, S.: Large Eddy Simulation of the Flow Around a High-lift Airfoil. Ph.D. thesis, Department of Thermo and Fluid Dynamics, Chalmers University of Technology (2003)
  6. Dovgal, A., Kozlov, V., Michalke, A.: Laminar boundary layer separation: instability and associated phenomena. Prog. Aerosp. Sci. 30(1), 61–94 (1994) CrossRef
  7. Fasel, H., Postl, D.: Interaction of separation and transition in boundary layers: direct numerical simulations. In: IUTAM Symposium on Laminar-Turbulent Transition, pp. 71–88. Springer, New York (2006) CrossRef
  8. Fishpool, G., Leschziner, M.: Stability bounds for explicit fractional-step schemes for the Navier-Stokes equations at high Reynolds number. Comput. Fluids 38(6), 1289–1298 (2009) CrossRef
  9. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3, 1760 (1991) CrossRef
  10. Hilgenfeld, L., Pfitzner, M.: Unsteady boundary layer development due to wake passing effects on a highly loaded linear compressor cascade. J. Turbomach. 126, 493 (2004) CrossRef
  11. Hodson, H., Howell, R.: Bladerow interactions, transition, and high-lift aerofoils in low-pressure turbines. Annu. Rev. Fluid Mech. 37, 71–98 (2005) CrossRef
  12. Inagaki, M., Kondoh, T., Nagano, Y.: A mixed-time-scale SGS model with fixed model-parameters for practical LES. J. Fluids Eng. 127, 1 (2005) CrossRef
  13. Jones, L., Sandberg, R., Sandham, N.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010) CrossRef
  14. Lardeau, S., Leschziner, M., Li, N.: Modelling bypass transition with low-Reynolds-number nonlinear eddy-viscosity closure. Flow Turbul. Combust. 73(1), 49–76 (2004) CrossRef
  15. Lilly, D.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A: Fluid Dyn. 4, 633 (1992) CrossRef
  16. Lou, W., Hourmouziadis, J.: Separation bubbles under steady and periodic-unsteady main flow conditions. J. Turbomach. 122, 634 (2000) CrossRef
  17. Marxen, O., Lang, M., Rist, U., Levin, O., Henningson, D.: Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech. 634, 165–189 (2009) CrossRef
  18. McAuliffe, B., Yaras, M.: Transition mechanisms in separation bubbles under low-and elevated-freestream turbulence. J. Turbomach. 132, 011004 (2010) CrossRef
  19. Michelassi, V., Wissink, J., Frohlich, J., Rodi, W.: Large-eddy simulation of flow around low-pressure turbine blade with incoming wakes. AIAA J. 41(11), 2143–2156 (2003) CrossRef
  20. Monokrousos, A., Brandt, L., Schlatter, P., Henningson, D.: DNS and LES of estimation and control of transition in boundary layers subject to free-stream turbulence. Int. J. Heat Fluid Flow 29(3), 841–855 (2008) CrossRef
  21. Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999) CrossRef
  22. Ossia, S., Lesieur, M.: Large-scale energy and pressure dynamics in decaying 2D incompressible isotropic turbulence. J. Turbul. 2(13), 1–34 (2001)
  23. Pauley, L., Moin, P., Reynolds, W.: The structure of two-dimensional separation. J. Fluid Mech. 220, 397–411 (1990) CrossRef
  24. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an aerofoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983) CrossRef
  25. Roberts, S., Yaras, M.: Large-eddy simulation of transition in a separation bubble. J. Fluids Eng. 128, 232 (2006) CrossRef
  26. Spalart, P., Strelets, M.: Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329–349 (2000) CrossRef
  27. Wissink, J., Rodi, W.: DNS of a laminar separation bubble in the presence of oscillating external flow. Flow Turbul. Combust. 71(1), 311–331 (2003) CrossRef
  28. Wissink, J., Rodi, W.: Direct numerical simulations of transitional flow in turbomachinery. J. Turbomach. 128, 668 (2006) CrossRef
  29. Wu, X., Durbin, P.: Boundary layer transition induced by periodic wakes. J. Turbomach. 122, 442 (2000) CrossRef
  30. Yang, Z., Voke, P.: Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305–333 (2001) CrossRef
  31. Zaki, T., Durbin, P.: Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85–111 (2005) CrossRef
  32. Zaki, T., Durbin, P.: Continuous mode transition and the effects of pressure gradient. J. Fluid Mech. 563, 357–388 (2006) CrossRef
  33. Zaki, T., Durbin, P., Wissink, J., Rodi, W.: Direct Numerical Simulation of By-pass and Separation-Induced Transition in a Linear Compressor Cascade. ASME (2006)
  34. Zaki, T., Durbin, P., Wissink, J., Rodi, W.: Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J. Fluid Mech. 665, 57–98 (2010) CrossRef