Members Login
login
Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox

Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox-December 2012

 Dmitry A. Lysenko, Ivar S. Ertesvåg, Kjell Erik Rian

Abstract

The flow over a circular cylinder at Reynolds number 3900 and Mach number 0.2 was predicted numerically using the technique of large-eddy simulation. The computations were carried out with an O-type curvilinear grid of size of 300 × 300 × 64. The numerical simulations were performed using a second-order finite-volume method with central-difference schemes for the approximation of convective terms. A conventional Smagorinsky and a dynamic k-equation eddy viscosity sub-grid scale models were applied. The integration time interval for data sampling was extended up to 150 vortex shedding periods for the purpose of obtaining a fully converged mean flow field. The present numerical results were found to be in good agreement with existing experimental data and previously obtained large-eddy simulation results. This gives an indication on the adequacy and accuracy of the selected large-eddy simulation technique implemented in the OpenFOAM toolbox.

References

  1. Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. J. Comput. Fluids. 35, 1126–1136 (2006) CrossRef
  2. Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Technical Report TF-62, CTR Annual Research Briefs, NASA Ames/Stanford University (1994)
  3. Breuer, M.: Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28, 1281–1302 (1998) CrossRef
  4. Cardell, G.S.: Flow past a circular cylinder with permeable splitter plate. Data taken from Mittal [29] (1993)
  5. Chorin, A.: Numerical solution of Navier-Stokes equations. Math. Comput. 22, 745–762 (1968) CrossRef
  6. Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation particle image velocimetry study of the turbulent air wake. J. Fluid Mech. 569, 185–207 (2006) CrossRef
  7. Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re = 3900. J. Wind Eng. Ind. Aerod. 90, 1191–1206 (2002) CrossRef
  8. Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381–396 (2008) CrossRef
  9. Fureby, C.: On subgrid scale modeling in large eddy simulations of compressible fluid flow. Phys. Fluids 8(5), 1301–1311 (1996) CrossRef
  10. Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997) CrossRef
  11. Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009) CrossRef
  12. Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991) CrossRef
  13. Geurts, B.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)
  14. Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6(16), 33–81 (2005)
  15. Hestens, M., Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Natl. Bur. Stand 29, 409–436 (1952) CrossRef
  16. Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986) CrossRef
  17. Jacobs, D.: Preconditioned conjugate gradient methods for solving systems of algebraic equations. Tech. rep., Central Electricity Research Laboratories, Leatherhead, Surrey, England (1980)
  18. Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995) CrossRef
  19. Kravchenko, A., Moin, P.: Numerical studies of flow over a circular cylinder at Re=3900. Phys. Fluids 12(2), 403–417 (2000) CrossRef
  20. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4(3), 633–635 (1992) CrossRef
  21. Lourenco, L.M., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Published in Ref. [2] (1993)
  22. Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Testing of OpenFOAM CFD code for plane turbulent bluff body flows within conventional URANS approach. In: Proceedings, 8th Int. Conf. on CFD in Oil and Gas, Metallurgical and Process Industries. Trondheim (2011)
  23. Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Turbulent bluff body flows modeling using OpenFOAM technology. In: Skallerud, B., Andersson, H.I. (eds.) MekIT’11-Sixth National Conference on Computational Mechanics, pp. 189–208. Trondheim (2011)
  24. Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids (2012). doi:10.1016/j.compfluid.2012.01.015
  25. Löhner, R.: Increasing the number of cores for industrial/legacy codes: approaches, implementation and timings. In: Proceedings, 23rd, Int. Conf. on Parallel Computational Fluid Dynamics, ParCFD 2011. Barcelona (2011)
  26. Ma, X., Karamanos, G.S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000) CrossRef
  27. Mani, A., Moin, P., Wang, M.: Computational study of optical distortions by separated shear layers and turbulent wakes. J. Fluid Mech. 625, 273–298 (2009) CrossRef
  28. Meyer, M., Hickel, S., Adams, N.A.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Flow 31, 368–377 (2010) CrossRef
  29. Mittal, R.: Progress on LES of flow past a circular cylinder. In: Annual Research Briefs, Center of Turbulence Research, pp. 233–241. Stanford University (1996)
  30. Mittal, R., Moin, P.: Suitability of upwind biased schemes for large-eddy simulation. AIAA J. 30(8), 1415–1417 (1997) CrossRef
  31. Norberg, C.: Experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994) CrossRef
  32. Norberg, C.: Flow around a circular cylinder: aspects of fluctuating lift. J. Fluids Struct. 15, 459–469 (2001) CrossRef
  33. Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids. 20, 441–453 (1996) CrossRef
  34. Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39, 1083–1094 (2010) CrossRef
  35. Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008) CrossRef
  36. Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992) CrossRef
  37. Prasad A., Williamson, C.H.K.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997) CrossRef
  38. Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35, 98–120 (2009) CrossRef
  39. Smagorinsky, J.S.: General circulation experiments with primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963) CrossRef
  40. Son, J., Hanratty, T.: Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105. J. Fluid Mech. 35, 353–368 (1969) CrossRef
  41. Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Subgrid-modelling in LES of compressible flow. Appl. Sci. Res. 54, 191–203 (1995) CrossRef
  42. Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(6), 70–73 (1967) CrossRef
  43. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998) CrossRef
  44. Wissink, J.G., Rodi, W.: Numerical study of the near wake of a circular cylinder. Int. J. Heat Fluid Flow 29, 1060–1070 (2008) CrossRef
  45. Wornom, S., Ouvrard, H., Salvetti, M.V., Koobus, B., Dervieux, A.: Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids 47(1), 44–50 (2011) CrossRef