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Technological applications:

Wing body junctions.
Roots of blades.
Side walls in wind tunnels.

Many interrogations remain:

Discrepancies remain between theories
and experiments ref 1, ref 2.
Modification of the Tollmien-Schlichting
mechanism ?
New mechanism associated with the
corner flow ?

Necessity to develop stability tools for 3D
flows.

M. Zamir.

Similarity and stability of the laminar boundary layer in a streamwise corner.
Proc. R. Soc. Lond., 377:269–288, 1981.

S.J. Parker and S. Balachandar.

Viscous and Inviscid Instabilities of Flow Along a Streamwise Corner.
Theoret. Comput. Fluid Dynamics, 13:231–270, 1999.
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Self similar solution
Numerical methods and results

3D boundary layer equations in
self similar form (η, ǫ) [1].
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S.G. Rubin.

Incompressible flow along a corner.
J. Fluid Mech., 26:97–110, 1966.

S.G. Rubin and B. Grossman.

Viscous flow along a corner: numerical solution of the corner layer equations.
Q. Appl. Math., 29:169–186, 1971.
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Elliptical form






φ = ηũ − ṽ

ψ = ǫũ − w̃

θ = ∂φ/∂η − ∂ψ/∂ǫ

Poisson-like equations system.






















∇2
ũ = −∂ũ/∂ηφ− ∂ũ/∂ǫψ

∇2φ̃ = 2∂ũ/∂η − ∂θ/∂ǫ

∇2ψ̃ = 2∂ũ/∂ǫ+ ∂θ/∂η

∇2θ̃ = −∂θ/∂ηφ−
∂θ/∂ǫψ + 2ũ

(

θ − 2η∂ũ/∂ǫ+ 2ǫ ∂ũ
∂ǫ

)

BC: Asymptotic matching solutions

Spectral discretization:
Chebyshev/Chebyshev. Symmetry
conditions along the bissector s.

Large non linear system: NEWTON
NITSOL solver.
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∂ǫ

)

BC: Asymptotic matching solutions

Spectral discretization:
Chebyshev/Chebyshev. Symmetry
conditions along the bissector s.

Large non linear system: NEWTON
NITSOL solver.

F. Alizard Corner Stability



Introduction
Base Flow

Linear stability
Sensitivity & Prospects

Self similar solution
Numerical methods and results

Elliptical form






φ = ηũ − ṽ
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Strong three dimensionality ⇒
3D Stability.
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Inflectional profile along the bissector
⇒ inviscid instability.

Strong three dimensionality ⇒
3D Stability.
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Spatial theory: from a parallel approach to the PSE applied to 3D Flows.

Instantaneous flow: Q = Q + ǫq̃ with ǫ≪ 1.

Slow variation along x :
{

q̃ (x , y , z , t) =t [ũ, p̃] (x , y , z , t) = q̂ (X , y , z) e i(F−Ωt)

where X = εxx with εx ≪ 1 and ∂F/∂x = α

Space and time behaviour: L1q̂ + L2∂q̂/∂x = 0

Initialization: zeroth order in ǫx

Integration along x of 3D PSE equations.
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Parallel flow assumption: the stability problem is rewritten as:
[

A2 (Re,Ω)α2 + A1 (Re,Ω)α+ A0 (Re,Ω)
]

q̂ = LOS2D q̂ = 0
with α ∈ C and Ω ∈ ℜ

Spectral discretization: Chebyshev/Chebyshev. Symmetry conditions along s.

Companion matrices combined with an Arnoldi Shift/Invert algorithm

TS branch even/odd modes. Corner mode (Inviscid nature [1])
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S. Balachandar and M.R. Malik.

Inviscid instability of streamwise corner flow.
J. Fluid mech., 282:187–201, 1995. |û| TS odd 1
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Neutral curve TS

Influence of the corner: to damp TS waves.

Corner mode: marginally stable.

Similar results as Parker & Balachandar.

S.J. Parker and S. Balachandar.

Viscous and Inviscid Instabilities of Flow Along a Streamwise
Corner.
Theoret. Comput. Fluid Dynamics, 13:231–270, 1999.
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Non-parallel correction:
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)

M. S. Broadhurst and S. J. Sherwin.

The Parabolized Stability Equations for 3D-Flows: Implementation
and Numerical Stability.
Applied Num. Math., 2006.
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Summary:

PSE 3D: to analyze convective waves with respect to 3D flows.

TS mechanism more stable.

The non-parallel effects provide a correction of the spatial amplification rate of the
corner mode: unstable area.

Remains less amplified than the TS mode. The theory can not explain the
experimental results.

A. Bottaro, P. Corbett and P. Luchini.

The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293–302, 2003.

F. Giannetti and P. Luchini.

Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech., 581:167–197, 2007.

O. Marquet, D. Sipp and L. Jacquin.

Sensitivity analysis and passive control of the cylinder flow.
J. Fluid Mech. in Press.
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Summary:

PSE 3D: to analyze convective waves with respect to 3D flows.

TS mechanism more stable.

The non-parallel effects provide a correction of the spatial amplification rate of the
corner mode: unstable area.

Remains less amplified than the TS mode. The theory can not explain the
experimental results.

Hypothesis:

Strong sensitivity to base flow modifications around the corner [1, 2, 3] ?

A. Bottaro, P. Corbett and P. Luchini.

The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293–302, 2003.

F. Giannetti and P. Luchini.

Structural sensitivity of the first instability of the cylinder wake.
J. Fluid Mech., 581:167–197, 2007.

O. Marquet, D. Sipp and L. Jacquin.

Sensitivity analysis and passive control of the cylinder flow.
J. Fluid Mech. in Press.
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Small perturbation of the base flow.






U ← U + δU

V ← V + δV

W ←W + δW

=⇒















û ← û + δû

v̂ ← v̂ + δv̂

ŵ ← ŵ + δŵ

Ω← δΩ

Introducing a scalar product <, >=

∫ Ly

0

∫ Lz

0

tq+∗

Bq dzdy

< q+,LOS2D (U + δU, q̂ + δq, Ω + δΩ) >= 0

δΩ =

∫ Ly

0

∫ Lz

0

tGuδU dzdy

Gu a sensitivity function with respect to 3D flows.
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Re = 500, α = 0.25.

Gu TS mode
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Re = 500, α = 0.25.

Gv TS mode
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Re = 500, α = 0.25.

Gw TS mode
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Re = 500, α = 0.25.

Sensitivity functions are
stronger for the corner mode.

Most influence on the
eigenvalue in the cross section.

Gw Corner mode
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Prospects:

To complete 3D PSE analyses. Critical Reynolds number associated with the
corner mode and comparisons with DNS.

Further explore the sensitivity functions with (Re, α).

Modification of the critical Reynolds number with respect to r quantifying the
deviation of the base flow Q [1] ?

Extension of the analysis in compressible regime.

A. Bottaro, P. Corbett and P. Luchini.

The effect of base flow variation on flow stability.
J. Fluid Mech, 476:293–302, 2003.
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