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Abstract. During the last decade, the development of efficient optimization tools that utilize
Evolutionary Algorithms (EAs) as the core search tool gained particular attention and reached a
certain level of maturity. These tools enabled the extensive use of EAs in large-scale industrial
applications, in which the analysis (evaluation) tool is computationally expensive. A literature
survey reveals that the majority of new, promising variants of EAs are conceptually based on the
reduction of the otherwise excessive number of calls to the evaluation software. This reduction
is possible through the use of various techniques such as: (a) the use of computationally cheap
surrogate evaluation models or metamodels trained on samples collected suring or separately
from the evolution (Metamodel-Assisted EAs, MAEAs), (b) the use of more than one evaluation
tools, with different approximation errors and computing cost, according to a hierachical structure
(Hierarchical EAs, HEAs) and (c) the use of Distributed EAs (DEAs), which subdivide the entire
population into concurrently evolving, semi-isolated subsets, which regularly exchange promising
individuals. These techniques and the most efficient combination of all of them in a single
search method (Hierachical, Distributed Metamodel-Assisted EAs, HDMAEAs), are discussed
in this paper. Due to space limitations, only three applications are presented; however, more
applications as well as technical details on the presented methods can be found in the cited
papers by the authors.

1 MAEAs and the Inexact Pre-Evaluation Technique

There is large literature on the development of metamodels for data interpolation or approx-
imation and the use of metamodels in MAEAs. The popularity of EAs in large-scale engineer-
ing applications increased because of their capability to accommodate metamodels, which may
considerably reduce their cost. The way metamodels can assist EAs in the search of optimal
solutions is through acting as low CPU cost, surrogate evaluation models. The higher the CPU
cost of a single evaluation, the higher the economy in CPU cost achieved by MAEAs, compared
to conventional EAs.
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A possible classification of MAEAs takes into account whether the metamodels used are
trained separately, i.e. off-line, or during, i.e. on-line, the evolution. Note that this classification
does not take into account the metamodel type; so, polynomial-based response surfaces, Gaussian
random field models (such as kriging), artificial neural networks (such as multi-layer perceptrons
or radial-basis function networks), etc. can be used.

EAs assisted by off-line trained metamodels rely on surrogates, built before launching the
EA. They approximate the response of the exact evaluation software over the entire search space,
thus they will be referred to as global metamodels. Once such a metamodel has been trained,
it is used to evaluate candidate solutions generated by the EA [29, 17] and locate “optimal”
solutions. These need to be evaluated again with the exact evaluation tool; should discrepancy
exist between the fitness according to the model and the metamodel, the latter must be retrained
by considering also the outcome of the additional exact evaluations [6, 30, 27, 5].

In contrast, EAs may be supported by on-line metamodel(s), trained or updated during
the evolution. For their training, individuals already evaluated are utilized. Many algorithmic
variants are possible. In [31, 20], after a user-defined number of generations, all population
members are evaluated with the exact model, producing new data to update the metamodel used
thus far. In [13, 28, 36], each population member is first evaluated using the metamodel and only
the most promising among them are re-evaluated by the exact model. The last variant was first
proposed by our research group, some years ago, and will be referred to as EAs incorporating
the Inexact Pre-Evaluation (IPE) phase (EA-IPE).

EA-IPE uses the metamodels to screen the population members and restricts the number of
exact evaluations per generation to potentially good members. An outline of the IPE algorithm,
for the general multi-objective case, follows [15, 22, 23]. The reader should keep in mind that,
in each generation g, the population P consists of the set of λ offspring Pλ, that of µ parents
Pµ and the archive of elite individuals Pα. Thus, P = Pλ ∪ Pµ ∪ Pα.

IPE starts after running a conventional EA for a couple of generation (gstart), based on the
exact evaluation model, so as to produce a number of entries (pairs (x, f(x)) ) for the database
(DB), to be subsequently used for the metamodel training. Here, x denotes the values of the
design variables associated with a candidate solution and f( · ) is the cost function; symbols
in bold denote multivariate quantities or functions. Upon completion of the starting phase
(g > gstart), any offspring x ∈ Pλ,g is first evaluated using the metamodel(s) and f̃(x) becomes
available. Based on f̃(x), a provisional (scalar) cost value is assigned to each offspring, namely
φ̃(x) = φ̃(f̃(x), {f̃(z) | z ∈ Pλ,g \ {x}}).

In single-objective optimization, this cost assignment is trivial: φ̃(x) = f̃(x). On the other
hand, it is known that, in multi-objective optimization, the scalar cost assignment to a multi-
variate objective function is possible based on many different techniques. However, since f̃ is just
an approximation, it is desirable to avoid the inevitably large number of comparisons required
by the commonly used cost assignment techniques, so a simple ranking in nondominated fronts
is sufficient to compute φ̃.

Based on the so-computed φ̃ values, λe < λ offspring are singled out in Pe, as follows:
Pe = {xi, i = 1, 2, . . . , λe : φ̃(xi) < φ̃(z), z ∈ Pλ,g \ Pe}. Then, the task of exact evaluations
for the current generation starts for all x ∈ Pe; their exact objective function values f(x) are
computed and stored in the DB.

Then, final cost values φ(x) = φ(f̂(x), {f̂(z) | z ∈ Pg \{x}}) are assigned to any x ∈ Pg. Note
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Migration
Figure 1: In the so-called island
model of DEAs, the evolution of
subpopulations (islands) is car-
ried out simultaneously; they reg-
ularly exchange best individuals,
according to various interconnec-
tion schemes (a simple variant is
shown here).

that f̂(x) stands for f(x), if x has been exactly evaluated, or f̃(x), otherwise. In multi-objecive
problems, techniques such as NSGA [32], NSGA-II [9], SPEA [38], SPEA2 [37] undertake this
task.

The elite selection operator E is then applied to Pe and updates the previous elite archive,
Pa,g+1 = E(Pe ∪ Pα,g). New parents are selected, Pµ,g+1 = S(Pµ,g ∪ Pλ,g), using the selection
operator S and new offspring are created by means of the crossover C and mutation M operators,
as follows: Pλ,g+1 = M(C(Pµ,g+1,Pα,g+1)). If the maximum number of exact evaluation has been
reached, the algorithm terminates. Otherwise, g ← g + 1 and evolution goes on.

So far, no assumption is made about the incorporated metamodels. They can be of any
kind and either global (periodically retrained) or local (built separately for each and every new
individual, using local data) ones can be used. To our experience [15, 14] local metamodels
provide better predictions and maximize the economy in CPU cost of EA-IPE.

2 Distributed Evolutionary Algorithms

A DEA is based on semi-isolated populations, evolving autonomously for a couple of gener-
ations and allows periodic migrations of individuals among them; this scheme is known as the
island model and is illustrated in fig. 1. In the literature, it has been demonstrated that DEAs
outperform single-population EAs [7, 35, 3, 1].

To optimize the DEA performance, a couple of parameters must be tuned. Among them
are the number of individuals allowed to migrate (migration rate), the number of generations
between two successive migrations (migration frequency), the selection scheme for the emigrants
and for those to be replaced in the host island (emigration and replacement policies), the graph
connecting islands, etc. [4, 8]. Usually, either the best individual(s) in a island and/or some
randomly selected ones emigrate to another, where they replace either the worst and/or some
randomly selected individuals [34, 2]. Different evolution policies (crossover type, mutation
probability, elitism) can be employed in different islands to increase exploration and exploitation
[33, 18]. These policies may dynamically vary by monitoring the performance of the islands [10];
additional measures can be taken to preserve diversity, like the spreading of infections to islands
which tend to become too uniform [11, 21].

The island model is not the only possible one. An alternative basis for creating DEAs
(the cellular model) is by restricting the selection of mates of each individual only amidst its
neighbouring ones, according to a specified topology [16, 26, 12].
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Figure 2: The inexact pre-evaluation
(IPE) employed at the i-th island of a
DEA. The evolution is identical to that
of a single-population MAEA except for
the extra migration step.

Incorporating metamodels for the IPE of offspring in a DEA may further increase its perfor-
mance. IPE is more suitable for the island model of DEAs, since in the cellular model generations
are loosely defined, because mating occurs locally and so it does not require the synchronisa-
tion of the population members. Henceforth, the term DEA will refer to the island model of
fig. 1, where each island evolves autonomously and, so, IPE can readily be introduced. This is
illustrated in fig. 2.

3 Hierarchical Evolutionary Algorithms

As described in a previous section, MAEAs are based on the utilization of low-cost evaluation
tools (metamodels), which interpolate or approximate existing fitness or cost values. The term
metamodel was used to denote generic prediction tools, which do not consider the “physics”
of the problem or the accuracy of the evaluation tool used to collect the training data. Or,
in other words, the same metamodel used in MAEAs can also be used for completely different
applications.

The same concept can be generalized by establishing and using a hierarchy of evaluation
tools, of different CPU cost and accuracy each. It is not necessary that there are only two
evaluation levels as in the aforementioned MAEAs. For instance, one may replace the generic
metamodel by a low-cost numerical solver to the physical problem under consideration. This
gives rise to the so-called Hierarchical EAs (HEAs).

HEAs for aerodynamic shape optimization problems can be devised by considering the avail-
able CFD software for the numerical prediction of flowfields. It is known that the same flow
problem can be analyzed through Navier-Stokes (N-S) solvers with different turbulence models
(algebraic, one- or two-equation differential models, large-eddy simulations, etc.), different treat-
ments of the turbulence equations at the wall (integration of the flow equations to the wall or
through the wall function technique) and, of course, with different grids. Integral boundary layer
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methods, coupled with an external flow solver and a viscous-inviscid flow interaction scheme (V-
II), whenever applicable, offer an alternative fast way to model the flow problem. So, a typical
HEA for aerodynamic shape optimization may consist of two levels, the lower one utilizing the
fast V-II tool, and the upper one based on the N-S solver. The low-level EA runs concurrently
with the high-level EA. It is not necessary, neither recommended, that both EAs use the same
evolution parameters (parent and offspring population sizes, crossover and mutation parameters,
parent selection scheme, etc.). The two levels communicate regularly by exchanging their elite
individuals. Immigrants at any level should be evaluated with the level’s exact evaluation tool,
before being incorporated into the level’s population. Numerical experiments have shown that
a well tuned HEA with balanced exploration —at the lower level— and exploitation —at the
higher one— clearly outperforms a conventional EA.

Though metamodels are considered to be “non-physical”, low-level evaluation tools, addi-
tional gain in the optimization CPU cost can be achieved by letting metamodels screen the
population members at each level, in accordance to the IPE technique. Note that it is not wise
to mix cost values obtained from different evaluation models in a single DB, from which training
data for the metamodel are drawn. Thus, a hierarchical MAEA should use as many DBs as the
number of levels or the number of exact evaluation tools.

4 Hierarchical Distributed MAEAs

In the last section on the theory of low-cost EAs, recent progress made by hybridizing all the
aforementioned CPU-saving techniques is presented. In fact, this section deals with Hierarchical,
Distributed MAEAs (HDMAEAs), based on the inexact pre-evaluation of candidate solutions
(hence the term HD(EA-IPE)).

First, let us make clear that the notion of hierarchy in an EA can be used in some other ways
as well. For instance, a simple kind of hierarchy, based on different evolution policies, has been
presented in [19], where some of the DEA islands (low-level islands) explore the design space,
whereas other (high-level islands) exploit the promising solutions located by the former. The use
of different models in different islands, with a communication scheme ensuring the propagation
of promising solutions from islands using the low-accuracy models to the one employing the
high-accuracy model, was first proposed in [25]. We further extended these ideas and proposed
the HD(EA-IPE) algorithm, which makes use of different models of the underlying physical
process wihout discarding the indisputable benefits from IPE [24].

Practically, a HEA can be readily extended to accommodate the island model described
in a previous section. It suffices to assign multiple DEAs to levels with evaluation models of
different precision and CPU cost. These are the exact models of each level, to distinguish them
from the metamodels trained on their results, which are also used. These metamodels can be
used to provide approximations to the level’s exact objective function, according to what was
previously referred to as the IPE phase, which is now separately applied over each island, as
in fig. 2. The HD(EA-IPE) scheme is schematically presented in fig. 3. The IPE phase is more
useful at the higher levels, where the cost of an exact evaluation is high. The use of metamodels
asks for DBs storing the outcomes of previous evaluations. Thus each level has its own DB, to
which the results of the evaluations with the level’s exact model are stored. This is shared by
all level’s islands but remains inaccessible from the other levels (fig. 3).
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Figure 3: Implementation of the HD(EA-
IPE). Each island evolves autonomously;
synchronization occurs only prior to mi-
grations. Requests for evaluations are
posted to the evaluation server, who man-
ages the computational resources, such as
the available processing units. The re-
sults of evaluations are stored in the com-
monly accessible DB, from which train-
ing patterns are retrieved to construct
or update the metamodel(s). Individu-
als exchanged between adjacent levels are
evaluated with the importing level’s exact
evaluation model before incorporation to
the level’s islands.

An add-on feature of the HD(EA-IPE) algorithm compared to D(EA-IPE) is the inter-level
communication. Imposing an hierarchy means that each level can communicate only with its
adjacent ones, i.e. its lower and upper level. For each level to communicate, its islands should
have accomplished a minimum number of generations. Once this criterion is satisfied for two
adjacent levels, the exchange of elite individuals, gathered from all level’s islands, takes place.
When importing individuals from another level, these should first be evaluated with the level’s
exact model. In this way, the mixing of heterogeneous objective function values, which could
mislead the selection process, is avoided. The level’s immigrants, after having been re-evaluated,
are distributed to the islands. Individuals coming from the lower level replace the worst members
of the host islands, only if they outperform them. If they originate from the higher level, the
replacement takes place without any further examination. Should a level consecutively fail to
provide useful individuals to its higher one, its evolution as well as that of all its lower levels
terminates, in order to save CPU cost. The inter-level communication, without technical details,
is presented in fig. 4.

5 HDMAEA: Selected Examples

The gain in CPU time expected from a hierarchical EA can be demonstrated by examining
the problem of minimizing an analytical function, viz. the Rastrigin function, defined as:

f(x) =
n∑

i=1

x2
i + 0.5

(
n−

n∑
i=1

cos(2πxi)

)
,

xi ∈ [−5.12, 5.12], i = 1, 2, . . . , n, n = 30.

(1)
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Figure 4: Communication between successive lev-
els in a HDEA. Level i communicates only with
its lower i− 1 and upper i + 1 one.

In this case, for each candidate solution x, the exact evaluation tool returns the value of the
above function. Since for a two-level HEAan approximate evaluation tool is also needed, this
was defined by

f(x) = δf + (1 + δA)
n∑

i=1

(xi + δc)2 + (0.5 + δB)

(
n−

n∑
i=1

cos(2πxi + δφ)

)
(2)

where
δf = 1.5n, δA = −0.5, δc = −0.7, δB = 0.1, δφ = 1.5.

Both the exact and approximate models with univariate inputs are illustrated in fig. 5. The
convergence plots of each one of the two levels are shown in fig. 6. A hypothetical CPU cost
ratio of 30 : 1 between the exact (eq. 1) and the approximate (eq. 2) model is assumed, so as
to “mimic” the CPU cost ratio of N-S and V-II solvers to be used in the next two examples.
Based on this assumption, the cost of the hierarchical optimization is about five times less than
the cost of a MAEA based on the exact evaluation model. The reduction in the total CPU

-6 -4 -2 0 2 4 6

0

4

8

12

16

20

24

28

f

x

 "Exact" Rastrigin
 "Approximate" Rastrigin

Figure 5: Comparison of the exact univari-
ate Rastrigin function and its purposely
built approximate model.



K.C. Giannakoglou, M.K. Karakasis, I.C. Kampolis

0 500 1000 1500 2000
10

100

 

"E
xa

ct
" R

as
tr
ig

in
 f
un

ct
io

n

Evaluations of the "exact" Rastrigin function

 Conventional EA, single level
 EA−IPE, single−level
 EA−IPE, 2−level, 1 EA−IPE in the lowest level
 EA−IPE, 2−level, 4 EA−IPE in the lowest level

Figure 6: Convergence history for the Rastri-
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lands were used at the lower level, only.

cost is even greater compared to the cost of a conventional EA. It should be stretched out that,
the use of a distributed MAEA in the lower level accelerates the convergence of the hierarchical
optimization algorithm further.

The second case is concerned with the design of an isolated airfoil with minimum drag, at
Re = 6.5 · 106, M∞ = 0.73, α∞ = 3.19◦. The airfoil drag should be lower than cd = 0.0128,
which is the drag of an existing airfoil (RAE 2822) at the same flow conditions; RAE 2822 is
considered to be the reference shape and its known lift coefficient value cl = 0.764 is enforced
as equality constraint. The maximum airfoil thickness, which should exceed 11% of the chord
length, is imposed as geometrical constraint.

The convergence history is plotted in fig. 7. A clear superiority of the HD(EA-IPE) scheme
is apparent not only over the conventional EA but also over algorithms that use metamodels
to reduce the calls to the N-S equation solver. Note that the HEA is based on a N-S (high
level) and a V-II (low level) tool. The conventional EA required approximately 6162 min (CPU
time on an Intel Pentium 4 processor) to reduce cd by 22.5%. With HD(EA-IPE), the same
reduction in cd is achieved in 1542 min. From another point of view, drag is reduced by 34.2%
compared to the reference shape, by allowing the HEA to run as long as the conventional EA
(approximately 6162 min).

The last case aims at the design of a compressor cascade operating at M1 = 0.618, Re =
8.41 · 105, α1 = 47.0◦. The objective is to minimize the mass-averaged total pressure losses at
the exit plane, ω = (p01 − p02)/(p01 − p1), while preserving the prescribed flow turning (27◦).
The losses of the reference cascade, computed by the N-S code, are ω = 0.0187. The outlet
flow angle is imposed as an aerodynamic constraint. The minimum maximum airfoil thickness
is constrained to 10% of the chord.

The convergence history is plotted in fig. 8. In this case, the supremacy of the HD(EA-IPE)
algorithm is even more pronounced, since there is a better agreement between the N-S solver
and V-II method results. Here, the computational cost of evaluating a candidate solution with
the V-II method is approximately 1/80 of the N-S equation solving cost.
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Figure 7: Drag minimization of an isolated air-
foil: Comparison of convergence histories of
EA, DEA and HDEA, all of them assisted
by the Inexact Pre-Evaluation phase (IPE),
The convergence of a conventional EA is also
shown.
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[10] D. J. Doorly and J. Peiró. Supervised parallel genetic algorithms in aerodynamic optimi-
sation. In 13th AIAA Computational Fluid Dynamics Conference, Snowmass Village, CO,
USA, July 1997. AIAA-1997-1852.
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