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Abstract

Multi-objective Evolutionary Algorithms (MOEAs) are a popular tool for researchers. This is
because many real world problems have multiple objectives that need to be optimized and MOEAs
have been shown to perform well in a variety of search landscapes. One area of MOEA research
that is still in its infancy is investigating the application coevolutionary techniques to the algorithm.
Since 1999, only a handful of researchers have explored the idea of combining coevolution with
MOEAs. This paper explores what many of those researchers has done in the field of Coevolutionary
MOEAs (CMOEA) and looks at the parallel techniques that can be used to enhance the algorithms
efficiency and/or effectiveness. Each researcher’s work is summarized and categorized based on how
coevolution was applied to the MOEA algorithm. We also look at some potential future applications
of coevolution and describe which situations they might be most beneficial.

1 Introduction

In the real-world, many problems are intractable and they are nearly impossible to solve with a de-
terministic algorithm in a reasonable amount of time. So researchers often use stochastic algorithms
as a means of finding a good solution in a reasonable amount of time. Often, these problems can
have more than one objective which can run counter to another. Currently, many researchers rely on
multi-objective evolutionary algorithms (MOEAs) as a means for solving these multi-objective prob-
lems (MOPs). MOEAs are stochastic algorithms that apply the principles of evolutionary algorithms
(EAs) to MOPs. MOPs are n-dimensional problems (where n is the number of objectives) where the
landscape is typically very large and produces many possible solutions. As such, there are additional
factors that an MOEA needs to address that aren’t addressed in single objective problems (preserving
good solutions, converging toward the optimal solutions, maintaining diverse solutions, and presenting
the decision maker with a reasonable number of solutions).

Recently, coevolutionary techniques have been applied to MOEAs. The resulting coevolutionary
MOEAs (CMOEAs) have shown some promise, but there is still a lot of untapped potential. One big
advantage of CMOEAs is the ease with which they can be parallelized. CMOEAs, by their nature,
can decompose easily into smaller parts that be processed simultaneously. By leveraging this inherent
parallelism, the efficiency and effectiveness of CMOEAs can be greatly increased.

Section 2 presents a brief overview of EAs and MOEAs. Section 3 presents a discussion on parallel
MOEAs. Section 4 discusses CMOEAs that have been implemented by researchers. Section 5 discusses
some possible coevolutionary techniques that can be applied to MOEAs. And Section 6 gives a brief
summary of this research.

∗The views expressed in this article are those of the authors and do not reflect the official policy of the United States
Air Force, Department of Defense, or the United States Government.



2 Why MOEAs?

EAs include genetic algorithms (GA), evolution strategies (ES), and evolutionary programming (EP).
EAs consist of a class of algorithms that leverage the concepts of genetics to enable the exploration
and exploitation of a search landscape. An evolutionary algorithm consists of a collection of individuals
(chromosomes) called a population. The chromosomes consist of cells (alleles) in which various data
types can reside; binary, integer, real-valued. These chromosome allele values are manipulated by EA
operators. These manipulated chromosomes, through a selection operator, form a new generation. Ge-
netic operators such as mutation and recombination are typically used to manipulate the chromosomes.
Mutation is the process of inserting new genetic material into the population by modifying allele values,
typically in a random fashion. Recombination consists of transferring preexisting genetic material or
allele values between two or more individuals (parents) in the population. There are many varieties of
genetic operators, each with a different set of parameters that may be modified given a particular EA
type [1].

The transition to multi-objective EAs (MOEAs) focuses on the phenotype domain with multiple
objectives or fitness functions. The genotype domain is essentially the same with each individual
chromosome evaluate for each fitness function. MOEAs allow a decision maker to weight the multiple
objectives and decide on a solution based on the importance attached to the objectives. There are
different ways a decision maker can weight the objectives. One of the most popular methods is by using
a Pareto front. The Pareto front MOEA generates multiple good (non-dominated) solutions and allows
the decision maker to choose the one that best solves the problem. MOEAs are great tools because,
unlike other methods, they can generate non-continuous and non-uniform Pareto fronts. Additionally,
MOEAs can typically handle deception problems well.

Due to a lack of space, MOEAs are not discussed in a lot of detail. For more information on MOEAs,
see the book by Coello et. al [2].

3 Parallel MOEAs

Many real world problems are quite complex and can be mapped to NP-Complete problems. Typically,
these problems are not pedagogical in nature and an optimal solution, using deterministic algorithms,
cannot be found in a reasonable amount of time. To obtain acceptable solutions to these problem,
researchers often use two approaches: stochastic algorithms and parallel processing. Of all the stochastic
methods, EAs are a popular choice for many researchers. An EA is a stochastic method that is capable
of finding very good solutions in a reasonable amount of time. But occasionally, there are can be
difficult real-world problems which can take an EA a long time to converge to a solution. In order to
increase efficiency, a parallel implementation of the EA may be used. EAs are naturally parallelizable
because they maintain a population of solutions [3].

But parallel MOEAs (pMOEAs) are fairly new and very little has been published of them. The
creation of a pMOEA is not an easy task. It requires the analysis of parallel paradigms and their
associated parameters [4]. This section will briefly discuss some of these paradigms and their importance
with respect to the problem.

Since MOEAs are stochastic methods, two critical factors that need to be addressed are the efficiency
and effectiveness of the pMOEA. A parallel version of an MOEA must remain as effective as its serial
counterpart and it must improve upon the efficiency (i.e. ”quickness”) as well. A parallel algorithm
that is faster than a serial algorithm, but doesn’t find as many good solutions, is pointless. Likewise,
a parallel algorithm that is just as effective as a serial algorithm, but it doesn’t improve the time to
find the solutions, goes against the principle of Occams Razor, which is usually stated as: ”Of two
competing theories or explanations, all other things being equal, the simpler one is to be preferred.”

For many MOEAs, the major computational bottleneck occurs in the calculation of complex non-



linear MOP functions, similar to the computational fluid dynamic (CFD) problems. By effectively
decomposing and distributing the problem to multiple processors, the problem can be solved more
efficiently. But even though an MOEA lends itself well to parallelizing, very little interest has been
shown. There are only a small number of MOEA publications that either address or attempt pMOEAs
[2].

4 Coevolutionary MOEAs

According to the Merriam-Webster Online Dictionary, coevolution is defined as ”evolution involving
successive changes in two or more ecologically interdependent species (as of a plant and its pollinators)
that affect their interactions ”. Coevolution can be either cooperative or competitive. Researchers have
been applying coevolutionary techniques to EAs for some time, but recently, these techniques have been
introduced into MOEAs. Paredis et. al. wrote a good introduction to coevolution [5].

This section explores the research done in the field of coevolutionary multi-objective algorithms
(CMOEAs) and notes how these algorithms have been parallelized.

A Starting Point
Perhaps the most common type of CMOEA uses the strategy of decomposing the chromosome into

smaller subcomponents and evolving the these subcomponents in parallel. This idea was introduced
by Potter et. al. [6] as a way to coevolve an EA. Potter created a cooperative coevolutionary genetic
algorithm (CCGA) that decomposes a problem into subcomponents, called species, that are easy to
parallelize. He proposed two algorithms - CCGA-1 and CCGA-2. With CCGA-1 each of the species
is coevolved in a round robin fashion using a traditional GA. The fitness of each subpopulation member
is obtained by creating a fully instantiated chromosome by combining the subpopulation member with
the best individual of the other subpopulations. The result becomes the fitness of the individual.
This method of credit assignment has several potential problems, such as undersampling and being
too greedy, but it was only created as a starting point to base the effectiveness of further refinements
of the algorithm. The results showed that CCGA-1 outperformed the standard GA when the species
represented functions that were independent of each other but it performed worse when the function
had dependencies.

To overcome this deficiency, a new credit assignment was created for CCGA-2 (see Algorithm 1 for
details). In addition to creating an individual as described before, a second individual is created where
a random member of each subpopulation is combined with the individual. The best fitness of the two
individuals is the one assigned to the child’s fitness. This change in credit assignment produced an
algorithm that did well when the function was independent or when it had dependencies.

CMOEAs with Subpopulations
Three different researchers have applied this strategy to CMOEAs; Keerativuttitumrong et. al. de-

signed the Multi-objective Co-operative Co-evolutionary Genetic Algorithm (MOCCGA)
[7], Tan et. al. created the Distributed Cooperative Coevolutionary Algorithm (DCCEA) [8],
and Iorio et. al. proposed the Non-dominated Sorting Cooperative Coevolutionary Genetic
Algorithm (NSCCGA) [9]. Keerativuttitumrong et. al. integrated the multi-objective genetic algo-
rithm (MOGA) designed by Fonseca [10] with the CCGA algorithm designed by Potter [6]. MOGA is
an MOEA that uses a rank based approach to finding solutions on the Pareto front. The MOCCGA
decomposes the problem into subpopulations based on the decision variables, or a part of the prob-
lem that requires optimization. Each individual of every subpopulation is ranked with respect to its
subpopulation based on its Pareto dominance when it is combined with the best individuals of other
subpopulations and they are assigned a fitness value based on their rank in the subpopulation. The
MOCCGA is tested against the MOGA using six optimization test cases developed by Zitzler [11]. The
test problems represent an array of aspects that an MOEA might be faced with. The author finds
that both algorithms do a particularly poor job on the discrete and non-uniform problems. But the



Algorithm 1 CCGA-2
1: procedure CCGA-2(N , g, fk(~x))
2: for Each species s do
3: P′s(g) = Randomly initialize population
4: Evaluate fitness of each individual in P′s(g)
5: end for
6: while Termination condition = false do
7: g = g + 1
8: for Each species s do
9: Select P′s1(g) from P′s(g − 1) based on fitness

10: Select P′s2(g) from P′s(g − 1) at random
11: if P′s1(g) is most fit then
12: Let P′s(g) = P′s1(g)
13: else
14: Let P′s(g) = P′s2(g)
15: end if
16: Apply genetic operators to P′s(g)
17: Evaluate fitness of each individual in P′s(g)
18: end for
19: end while
20: end procedure

results show that MOCCGA performs better than the MOGA in all the tests that were run. When
the MOCCGA is run in parallel, each species is run on its own computer and they broadcast their
best decision variable and the whole decision variable to all other processes. The algorithm is tested
with small, medium, and large instances of the problem on 1, 2, 4, and 8 processors and with the MPI
broadcast compared to a customized broadcast. It is determined that the customized broadcast works
best for the 4 and 8 node cases and the speed up is ”quite satisfactory”.

The DCCEA created by Tan et. al., is basically an extension of Keerativuttitumrong et. al.’s work
[7]. The algorithm uses the CCGA cooperative coevolution scheme [6] and the MOGA ranking scheme
[10]. Where this algorithm is particularly different is that it uses a different niching mechanism and an
archive for the solutions. The niching scheme is one developed by the author, so it differs from the one
used in [7]. The biggest advantage to this niching scheme is that it is adaptive and the user doesn’t
need to set a niche radius a-priori. As for the archive, it contains all the non-dominated solutions up
to a user defined maximum. An extending operator is also employed which clones individuals that
have the smallest niche count and assigns the pieces of the clones to the various subpopulations. The
hope is that doping the subpopulations can bias the algorithm to areas of the Pareto front that need
further exploration. The parallelization of the DCCEA is a coarse-grained strategy, similar to the one
employed by Keerativuttitumrong [7], but more involved. The subpopulations are combined into peer
groups and each peer group is assigned a computer. These peer groups have their own archive and
generate complete solutions. After several generations (an exchange interval), each peer group submits
its archive and representatives to the central server and downloads the updates from the other peers.
The peers are synchronized according to a user defined synchronization interval to avoid performance
deterioration. This distributed algorithm is imbedded into a distributed computing framework called
Paladin-DEC [8, 12].

DCCEA is tested using five of the six test functions that Zitzler introduced [11]. The results are
compared with five other MOEAs, based on generational distance (how far the known Pareto front
is from the true Pareto front) and spacing (how evenly distributed the members are along the known
Pareto front) [2]. He finds that with respect to generational distance, his results are comparable to the
other MOEAs, but it does especially well on the multi-modal and nonuniform test cases. With regard
to spacing, his algorithm consistently had the best spacing.



The NSCCGA proposed by Iorio et. al. combines many of the aspects of the CCGA [6] and
the NSGA-II [13] MOEA. The algorithm decomposes the problem into subpopulations based on the
number of variables (genes) and coevolves each subpopulation in an attempt to find the true Pareto
front for a problem. It forms collaborations in a manner slightly different than [6]. Instead of choosing
the best individual from each subpopulation, a random individual is chosen from a group of ”best”
individuals. Any individual that was a segment of a non-dominated solution is contained in that group.
The individuals are ranked based on the NSGA-II Pareto ranking scheme, where all non-dominated
individuals are ranked as a one and removed from the population. Then the next set of individuals are
ranked as a two, and removed from the population. This continues until all individuals in the population
have been ranked. Since each subpopulation holds a static number of individuals the algorithm uses
the NSGA-II’s crowding distance [13] to determine which individuals to keep from the same rank.
The algorithm is compared to the NSGA-II on five problems proposed by Zitzler [11] and a rotated
problem proposed by Deb [13]. The NSCCGA performed well compared to the NSGA-II in all cases
except the rotated problem. The rotated problem is an example of variables that are not independent
of one another. The problem is decomposed in such a way that it is assumed that all the variables
are independent. This is a drawback for all subpopulation-based coevolutionary algorithms. While no
parallel experiments were run for this algorithm, parallelization of the algorithm would be similar to
the previously mentioned algorithms since their structures are similar.

Paremee et. al. created Parmee’s Co-Evolutionary MOEA [14] which also decomposes the
problem, but slightly different than the previously mentioned algorithms. Parmee’s CMOEA was used
as a preliminary method to identify feasible design regions. It’s goal is to initially narrow the search
space in the field of airframe design. A population for each objective function is evolved simultaneously.
The algorithm utilizes a range constraint map. The results show that the algorithm does a pretty good
job at the edges of the Pareto front, but doesn’t do as well in the center regions. It also appears that the
reduction cycle may play an important role in the solution. Running the algorithm in parallel produced
a linear decrease in running time.

CMOEAs and Niching
Two algorithms, the Elitist Recombinative Multiobjective Genetic Algorithm with Coevo-

lutionary Sharing (ERMOCS) [15] and the Genetic Symbosis Algorithm (GSA) for MOPs
[16] apply coevolution to the niching portion of an MOEA. The ERMOCS, developed by Neef et. al.,
uses a rank-based selection scheme, where an individuals rank is determined by the number of indi-
viduals that dominate them. The algorithm uses coevolutionary shared niching (CSN). CSN was first
introduced by Goldberg [17] as a way to dynamically change the niche size and location of a population.
He does this by using an economic model known as a model of monopolistic competition. This model
coevolves customers and businessmen, where a customer is a solution and a businessman is a is the
location of a niche in the phenotype space. The niches move dynamically and the fitness is determined
by the sum of the rank of the solutions located in the niche radius. So businessmen in sparse regions
along the Pareto front are more fit than ones in densely populated regions. A disadvantage of this
algorithm is the fact that a minimum distance parameter needs to be set. Several options are presented
to alleviate this situation. This algorithm was only run serially, so no parallel information is currently
available. But a parallel implementation could easily be added to the algorithm by decomposing the
information based on customers or businessmen. These populations could then also be decomposed to
smaller populations and parsed out to different machines.

The GSA for MOPs was created by Mao e.t al. as an extension of his single objective GSA [18]
to handle multiple objective problems. The GSA portion of the algorithm has two features that are
different from the standard GA. The first feature is the introduction of a parameter that attempt to
represent the symbiotic relationship between individuals. The second feature is a symbiotic parameter
that describes the interaction of the objective functions. This second parameter functions in the same
manner as the initial symbiotic parameter. There are five weighting factors that the designer must



plug into the algorithm. These weight the importance of the mean and variance in the phenotype and
genotype domains and the weight of the ranks of the solutions. But determining these weights means
the user might need to have an idea of what the search space looks like. An earlier paper appears
to show that adjusting the settings produces varying results when applied to a single objective [18],
so it seems that some knowledge of the search space is beneficial in determining the parameters. The
algorithm results are not compared to any other MOEA results, so the effectiveness of the algorithm,
with respect to similar methods, is unknown. Additionally, no parallelization efforts were attempted
with this algorithm. But parallelization can be obtained by decomposing the population and using an
island model.

Other CMOEA Methods
Barbosa et. al. proposed an interactive genetic algorithm with co-evolving weighting fac-

tors (IGACW) for the objectives along with the population [19]. This algorithm has two populations,
one for the proposed solutions to the problem, and the other for the weight-set population. The pop-
ulations are evolved in a round robin process. Then, after a specified number of generations, a set of
solutions are presented to the user for inspection and ranking. The ranking is based on user preference
and may be different from the actual fitness assigned to the graphs by the algorithm. The algorithm
completes when the user is satisfied with the results. The results show that the evolution process for
the weights is greatly affected by the user preferences. The weights associated with the criteria evolved
to quite different values in the two runs. The solutions also evolved to greatly different graphs. Since
this type of testing is highly subjective on the user’s preference, it would be hard, if not impossible,
to compare the IGACW algorithm with another GA and obtain objective results. This algorithm was
not parallelized, but it could be based on the two populations that are being coevolved, the solution
set and the weight set.

Lohn et. al. implemented a version of a Coevolutionary Genetic Algorithm, which is referred
to Lohn’s CGA [20]. This algorithm utilzes two populations, a solution population and a target
vector population. Both populations are evolved using genetic algorithms. Individuals in the solution
population have their fitness based on how many target objective vectors (TOVs) they successfully
solve as well as the difficulty of those target vectors. The individuals in the TOV population have
their fitness based how many solutions can achieve their settings. The highest fitness score is achieved
when only one solution meets the TOV. The worst fitness score occurs when either all solutions or no
solution eclipses the TOV. Lohn’s CGA is compared to the results found in [11]. The algorithm is run
on the six test functions and then compared to the results of the other MOEAs. The CGA algorithm
did well compared to all the MOEAs on the test functions. Only the SPEA was able to find any of
the Pareto optimal points from the nonuniform test function, but the CGA provided close results with
very good coverage. On the deceptive test function, the SOEA performs better at low f1 values but
the CGA has excellent coverage along the rest of the Pareto front. As far as coverage goes, the CGA
does very well compared to the other algorithms. Its weakest performance is on the nonuniform test
function when compared to the NSGA, SOEA, and SPEA. This algorithm was not parallelized but
it could be decomposed based on the populations. The TOV population could be farmed out to on
processor and the solution population could be farmed out to another. Further decomposition of the
individual populations could also be implemented.

Coello proposed a Coevolutionary MOEA that he labelled the CO-MOEA [21]. The CO-MOEA
decomposes the problem into competing populations. If a population produces more individuals on the
known Pareto front, then it is rewarded by having its population size increased. The goal is to direct the
search to the most promising regions of the search space. The algorithm runs in four stages which help
to regulate the competing population sizes. The algorithm is compared with the three other MOEAs.
Quantitative and qualitative comparisons illustrate how each algorithm does with respect to the other
algorithms. He finds that the CO-MOEA is competitive with the other MOEAs. The two disadvantages
mentioned in the paper include the high selection pressure induced by the algorithm’s elitist scheme,



and the number of populations that the algorithm may need to use. This algorithm was not parallelized,
but it could be, by decomposing the population into smaller populations and using an island model.

Table 1 lists the coevolutionary MOEAs discussed in this paper. It labels each algorithm as either
symbiotic (host and symbiont populations interact with each other),cooperative (populations cooperate
to achieve the best solution), or competitive (populations compete to achieve the best solution). It also
shows which algorithms decompose the chromosome into smaller subpopulations. The table also states
where coevolution is applied in the various algorithms.

Table 1: Coevolutionary Techniques Used in MOEAs

Symbiotic,
Cooperative or Subpopulations Where applied

Algorithm Competitive Used in algorithm
ERMOCS [15] Cooperative No Niching

Parmee’s CMGA [14] Cooperative Yes Population
GSA for
MOP [16] Symbiotic No Niching

IGACW [19] Cooperative No Objective Weighting
MOCCGA [7] Cooperative Yes Population

Lohn’s CGA [20] Cooperative No Fitness Function
DCCEA [8] Cooperative Yes Population

CO-MOEA [21] Competitive No Population
NSCCGA [9] Cooperative Yes Population

5 The Next Frontier?

Coevolving Multiple MOEAs
A common cliche is ”Two heads are better than one”. This could also be applied to MOEAs.

Suppose we have an MOEA that is particularly effective at finding solutions to deceptive problems and
we have another MOEA that is effective at solving non-uniform Pareto fronts. If we don’t know the
phenotype space of the problem, throwing multiple MOEAs with distinctive strengths may be better
than using just one. The MOEAs could be coevolved in such a way that individuals are passed from
one algorithm to another in an attempt to seed the algorithms with good solutions.

One may ask how this is different than using a memetic algorithm? Typically, memetic algorithms
run the multiple algorithms in a serial fashion or where one algorithm is dominant over another. In
this case, the algorithm run in the same manner they would individually. This may prove to be a more
efficient way to solve a problem than using either a single MOEA or using a memetic algorithm.

Coevolving MOEAs with other Search Algorithms
MOEAs have been developed which incorporate local search at some point in the algorithm. But

an interesting application may be to coevolve an MOEA with another type of algorithm, such as a local
search, Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), simulated annealing,
etc. By coevolving, the search can exert a blend of exploitation and exploration that occurs in each
generation of the algorithm. There are many ways that this coevolution can take place, but this section
limits the discussion to one particular implementation.

Suppose you have x populations, one is evolved using an MOEA and the other x−1 are local search
algorithms. It the first generation, the MOEA runs and ranks the top solutions, using a Pareto ranking
system and a crowding mechanism. The top solutions are then used to seed the local search algorithms.



While the local search algorithms are working to find better solutions, the MOEA is also evolving. After
a set number of generations, the algorithms cross-pollinate, and they evolve using the new members in
their population. A mechanism would have to be devised so that an individual is only submitted to
a local search mechanism a set amount of times. This allows for other avenues of exploration in the
search. But the populations could be designed so that there are varying degrees in the local search. For
example, one local search may flip only one bit or it may focus on only one segment of the chromosome,
while another population may flip 4 bits or focus on a separate part of the chromosome.

Coevolving Archives using Multiple Niches
Different algorithms use different types of crowding mechanisms and store their results into an

archive. What if the algorithm coevolved multiple archives based on two different niching schemes?
Each individual in a population could be labelled in some way so that the algorithm can determine
which points are different in the archives. The archives can be combined into a larger population that
is evolved. This type of coevolution doesn’t appear to have too much value, but it may be able combine
various nicning procedures to create a more diverse population than one niching operator can.

Coevolving Target Solutions
Coevolution could also be applied in a manner similar to the one prescribed in by Lohn et. al. [20].

In that research, target objective vectors guide the search toward the Pareto front by increasing the
fidelity of the fitness required to be considered a ”good” solution. This moving target is an attempt
to guide the solutions toward better solutions. This could possibly be done in a manner similar to
niching. As a population evolves, the fitness of individuals are based their distribution along the Pareto
front. Target vectors are evolved at the same time and these vectors are placed in areas throughout the
Pareto front. If many points fall into neighborhood near a target vector, its fitness is low, but if only
one or two vectors fall into a target vector neighborhood, it achieves a high fitness score. The target
vectors evolve to fill less sparse locations along the Pareto front. In turn, the population of solutions
are rewarded with higher fitness values when they are closer to a target vector with only a few points in
its neighborhood. This method may prove to be alternative to some of the niching methods currently
in use.

Coevolving Competing Populations
In Coello’s CO-MOEA [21], populations compete implicitly. A population is rewarded with more

individuals when it contributes more to the known Pareto front. But there is no explicit competition
between them. A population didn’t have a goal to have more individuals than another population, it
just happened by chance. But what if there were explicit competition between populations, in which
the goal of each population is to gain more individuals? We propose a way that the populations could
coevolve and compete in a way that they drive each other to obtain better solutions.

You could set-up an MOEA that has multiple populations, each with the same initial size. Each
population’s individuals are fully instantiated, meaning an individual is a complete solution to the
problem. The populations evolve as any typical GA population does, using selection, mutation, and
recombination operators. A global Pareto front is generated from the best individuals from all the
populations. The population that generated the most individuals is rewarded with more population
members and the population with the fewest members is punished with fewer members. A population
that has fewer members adjusts it’s operator parameters and quite possibly the operators it uses in an
effort to improve its search capability. A population that gains members maintains status quo.

Pitting populations against each other and allowing them to vary their operators and parameters
can be very beneficial, especially for unknown search landscapes. This self-preservation mechanism
allows the populations to self-adapt and create an algorithm that is better suited to the search space.
Plus, if a good population starts to lose individuals, it can adapt in an effort to avoid stagnation. This
type of competition has a lot of potential.



6 Conclusion

The CMOEAs reviewed in this paper set the stage for many possibilities in the future. Some future
implementations that are currently being studied have been discussed. CMOEAs decompose nicely, so
they are can be easily implemented in a parallel fashion to produce better effectiveness and/or efficiency.
CMOEAs show a lot of promise and may be able to provide better results when faced with unknown
search landscapes.

References
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