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ABSTRACT 

This paper introduces an algorithm for the maximization of the spreading factor of Pareto fronts.  
A set of synthetic functions is used to contrast the spreading of our approach against the one 
produced by NSGA-II and SPEA-2. A bi-objective structural optimization design problem with 
constraints is also solved with the proposed technique. The goal is to minimize weight and 
displacements in the structure, subject to three physical constraints: Von Misses Stress (subject 
to a maximum permissible), small holes, and the number of pieces used to build the structure. 
The finite element method is used to evaluate the potential solutions elaborated by the search 
algorithm in the discrete space of the structural problem. Since we approach bi-criterion 
optimization problems, a selection mechanism based on Pareto dominance determines the best 
potential solutions. However, the number of potential solutions in this kind of problems is large 
and the size of the Pareto set is limited to a target number. Thus, the goal of this paper is to 
introduce an algorithm that picks as many potential solutions as the target number while 
keeping the maximum spreading of the Pareto front. 

Estimation Distribution Algorithm. The representation is discrete, thus every structural 
element is encoded by a binary variable which indicates whether an element is present or not. A 
number of probability vectors is computed from a population sample. The length of each vector 
is the number of structural elements of the potential solutions. Thus, each element gets a 
probability value of being present (or absent), and later used to generate the new population. 
Each probability vector is linked with a point on the Pareto front, so we have as many 
probability vectors as target points on the Pareto front. A detailed description of the EDA 
algorithm used is available in [2] but the important features are the following. During the first 
step random vectors populate the algorithm and the constraints and objective functions are 
evaluated. A selection based on Pareto dominance criteria is applied over constraints and 
objective functions producing a set of feasible and not feasible individuals. The feasible ones 
are chosen at once. If the target size of the Pareto set is not met then more elements are chosen 
from the infeasible set but this time Pareto dominance is computed only over the constraints. 
When the total number of non-dominated individuals is larger than the target number, the Max-
Min algorithm (described next) picks as many as the target number of desired individuals which 
have maximum spreading over the Pareto set. Then, each individual is used to update a 
probability vector.  

Spreading Algorithm. Most Multi-objective Evolutionary Algorithms (MOEAs) are based on 
Pareto dominance criteria to select the best candidate solutions. This criteria applied on m 
functions can not discriminate neither guide the search when m is relatively large (greater than 
3). Furthermore, an infinite number of Pareto solutions can be found in continuous domains for 
m equal to 2. Because of these issues, the efficient application of Pareto dominance has been 



investigated. Many authors have proposed different manners to discriminate the candidate 
solutions that provide good spread over the Pareto front while keeping population diversity. For 
instance, PAES [6] uses a grid over function space to determine the less populated regions; 
NSGA-II [1] estimates a crowding measure by computing the distance to neighbors; SPEA2 [3] 
estimates crowding by finding clusters of population. The proposed algorithm adds points to a 
new Pareto front so the next point chosen is that one that maintains high uniform distribution, 
thus maximizing spread. The NSGA-II and SPEA2 crowding measures do not ensure good 
spreading because eliminating clusters or crowded areas do not mean to choose the best 
uniformly distributed individuals. The Max-Min algorithm is efficient since distances are 
computed only between the selected points and the remaining ones; also sorting is not 
necessary. The pseudo code of the Max-Min algorithm is presented next. 

 
Experiments. The Max-Min algorithm was contrasted with the spreading mechanism of the 
NSGA-II and SPEA2 algorithm. The NSGA-II uses a distance measure based on the length of 
the sides of a hypercube delimited by the neighbors of an individual. SPEA2 uses a density 
function based in the K-neighbor distance. For comparison we use a 3-objective synthetic 
functions to generate a Pareto set. Define the variables as x= random(0,1), y= random(0,1); the 
Pareto front is defined as: f1= x, f2= y and  f3= (1-x2)+(1-y2). We can observe that every 
individual generated by these functions will be non-dominated. In order to compare the different 
approaches we used the spreading metric in Equation (1) (see [5]). 

 

|F| is the number of objective functions, de is the distance between every extreme in the Pareto 
set we are measuring and the corresponding extreme in a Reference Pareto set, |Q| is the 
population size, di is the sum of normalized Euclidean distance from point i-th to their neighbors 



in every objective function (point (i+1)-th sorting every objective function), and µ is the mean 
of the distances of the Pareto set we are measuring. The spreading reported by each approach is 
shown in Table 1. Population size is the whole Pareto set generated by using the functions 
discussed before. For 30 independent runs the target archive of 50 points was computed, 
discriminating points according to the NSGA-II, SPEA2 and Max-Min algorithm. The mean and 
variance are also shown.  

 

Table 1. Spreading measures, for the different approaches, filling a fixed size archive of 50 
individuals. 

We can observe (graphically) the results of the different approaches in Figure 1. 

 

Figure 1. Comparison between different discrimination mechanism. 50 individuals were 
selected from 250 non-dominated solutions (see row 2 in table 1). 

Figure 2 shows the results of another design problem. The shape optimization algorithm is used 
to design a bicycle frame by using 16 probability vectors. For 30 independent runs the spreading 
metric was calculated giving the results presented in Table 2. For this experiment the SPEA2 
discrimination mechanism and the Max-Min algorithm were applied. As we can observe in 
Figure 2, the Pareto front resulting from the Max-Min algorithm presents a nice uniform 
spreading. The material properties are: Young modulus =70e9 Pa, Poisson modulus = 0.2, 
thickness =0.005 m, Maximum Von Misses Stress = 100e6 Pa. 

Conclusions. The new approach to multi-objective shape optimization gives a set of 
compromise solutions which are representative of the solution space. The proposed algorithm is 
compared with the NSGA-II and SPEA2 mechanism that provide spread solutions over the 
Pareto front. In all cases the Max-Min provides better spreading over the Pareto front. By using 
the Max-Min algorithm we found good candidate designs as shown in Figure 2. In this case  the 
design problems has a large amount of variables (in the hundreds), and therefore a huge search 
space (about 2n possible solutions, where n is the number of finite elements).   



 

Figure 2.Application example (bicycle frame), and comparison using the SPEA2 spreading 
mechanism and the proposed Max-Min algorithm. 
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