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Dynamics evolve on a high-dimensional space (or infinite-dim’l)
Project dynamics onto a low-dimensional subspace S

ker PS

Define dynamics on the subspace by

r=Psf(r) Ps:V — S isa projection

Two choices:
choice of subspace

choice of inner product
(equivalently, choice of the nullspace for a non-orthogonal projection)



Obtain “optimal” basis for the subspace, from data

Gather data, as “snapshots” u(x,t) from simulations or experiments

Determine orthonormal basis functions that optimally span the
data:

Pou(z,t) = a;j(t)p;(x) b€V
j=1 POD modes
T
Minimize / lu(t) — Pyu(t)||” dt S = span{p; }
0

Solution: SVD of the matrix of snapshots

Limitations

Optimal for capturing a given dataset, not necessarily dynamics
Low-energy modes may be important to the dynamics
POD says nothing about which inner product you should use



Reduced-order models can behave unpredictably

Can even change stability type of equilibria!
[Rempfer, Thoret. CFD 2000]

Energy-based inner products behave better

Consider a system with a stable equilibrium point at the origin

An energy-based inner product induces a norm that is a Liapunov
function:
V(z) = 2’ Qx is a Liapunov function

<Cl?7y> — ajTan Q >0 V(QZ') — QQij(gj) < 0, VereU

Useful result: if such an inner product is used for Galerkin
projection, the reduced-order model is guaranteed to have the
same stability type as the full system [Rowley, Colonius, Murray, Phys D 2004]

One interpretation of balanced truncation: use adjoint simulations
to determine an appropriate inner product (the “observability
Gramian,’ always a Lyapunov function)
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POD modes are not optimal for Galerkin projection

POD determines a subspace that optimally captures the energy in
a given dataset

These modes are usually not optimal for Galerkin projection

Low-energy modes can play an important role in the dynamics
[Aubry, Holmes, Lumley, 1988; Smith 2002 PhD thesis, Princeton]

Can often do better with balanced truncation [Moore 1981]

Error: co-norm
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Why doesn’t everybody use this!?

Valid for stable, linear systems

Extensions for unstable systems [Jonckheere & Silverman 1983, Zhou
2001]

Extensions for nonlinear systems [Scherpen 1993, Lall, Marsden,
Glavaski 1999]

Computationally expensive for large systems
n> computational time: n > 10> for typical fluids simulations

Improvements for large systems

POD is tractable for large systems. Can we extend, e.g., the
method of snapshots, to compute balancing transformations!?

Based on earlier snapshot-based methods:

Lall, Marsden, & Glavaski, 1999
Willcox & Peraire, 2001



Overview of balanced truncation

e Start with a stable, linear input-output system

What are you interested in T = Ax + Bu

aparg o
e Compute controllability and observability Gramians
o0 * o0 *
X =/ et BB*e? 't dt Y =f e tC*Ce™ dt
0 0
AX +XA"+BB*=0 AY+YA+C*C=0

States easily excited States that have large influence
by an input on the output

e Find a transformation 7" that simultaneously diagonalizes X and Y
01

r =171z, T1X(T Y =TYT=X%X =

On

e Change coordinates, and truncate states that are least controllable/observable




Construct Gramians from impulse response data

Not solving Liapunov equations
For a single input: compute impulse-state response:

T = Ax, z(0) =B

solution
z(t) = e™MB

The controllability Gramian is then W, = / r(t)z(t)! dt
0

Discretize in time, collect snapshots into a matrix:

| |
X = |x(t1) - x(tm)

Then | W, ~ XX7 - .

For observability Gramian, same procedure, but use adjoint
equations = A*z 2(0)=C"

For multiple inputs/outputs, same procedure, but do one impulse-
response for each input/output [Lall et al, 1999] ¥




Often, we are interested in modeling the full state

If dimension is large, project output onto POD modes
POD gives optimally-close output-projected system (in 2-norm)

u © = Az + Bu Full state
> >
7 Output
Original system, full dynamics projection
u i = Ar + Bu POD coefficients
> >
y=Cx
Output-projected system, full dynamics Balanc.ed
truncation
u . T - POD coefficients
a =V Ada + V" Bu
> >
y = C'Pa

Reduced-order model 12



Method of snapshots enables one to compute approximate
balanced truncations with cost similar to POD

One simulation for each control input, one adjoint simulation
for each output

One SVD, (# direct snapshots) x (# adjoint snapshots)

If number of outputs is large, method for projection onto
smaller-rank output

Balanced truncation is just POD with respect to an inner product
defined by the observability GramianY:

(z1,22)y = ] Yo
Observability Gramian is always a Liapunov function => preserves
stability!
Obtain set of bi-orthogonal modes: Galerkin:

direct modes: {¥1,...,¢n} © = f()
adjoint modes:  {¢1,...,%n} x(t) = Z%‘ (t)e;
J
bi-orthogonal: <@DZ, g0j> = 5@' a; (t) = <¢j, f(:l])>
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Plane channel flow with periodic boundary conditions

Goal: delay transition to turbulence using feedback control

Y,V

Goal: improved understanding of transition mechanisms fIOW/>

Focus: low-dimensional models of transition
Linear development of small perturbations £

/)
Transition not predicted correctly by linear stability theory > +

Non-normality of the governing operator results in large
transient growth, even though linearized flow is stable 777" ¥/

Large linear system with complex dynamic behavior
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Previous work:

Trefethen et al [Science, 1993]
Farrell & loannou [96,96,01]
Schmid & Henningson [01]
Bamieh & Jovanovic [01,03]
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Navier-Stokes equations linearized about a laminar profile

Perturbation dynamics fully described by wall-normal velocity

-+ =
v and wall-normal vorticity n N
o, . . T
Clamped boundary conditions  v(+1) = a—y(il) =0 V
Orr-Sommerfeld/Squire system Adjoint system
2 —-A 0 v LOS 0 U g —-A 0 vl *OS U’@Z U
ot | 0 I||n -U'0, Lsq| |n ot| 0 I||n 0 sol |1
— I el . i 2 « B , B L 5
1 . 1
l actuation disturbances

LEZA$+@U1+ 2

® System in standard state-space form with actuation and disturbances

Analysis as an input-output system: Bamieh & Jovanovic [01,03]




Perturbations of the form
q = G(y)e'*r TPzt g = m

System can be analyzed in I-D so that full balanced truncation is tractable,
allowing comparison with the BPOD approximation and POD

Well-studied cases (Farrell, Henningson, Reddy, Schmid, Jovanovic, Bamieh)

Case presented here &=I, =1 and exhibits rich dynamics
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For a single wavenumber, frequency response can be computed
exactly

BPOD captures the resonant peak even at low order

POD slowly improves with additional modes, but has spurious
peaks due to eigenvalues near the imaginary axis

10° ————— —————m S — 10° —
o full ] o full ]
| o BPOD2|: o BPODS|]
102 | o POD2 o POD6
: 10° _
1 spurious peaks |
10 in POD model
101 E
10° |
| 10° E
10 3 f
10 10 10 10 10 10




Infinity error norm bounds  Or41 < HG — GrHoo < 2X7 +19;

_— =
6
10 '
- © —full BT lower bound
— 8 —full BT upper bound
— » — full BT inf-norm
4 - 8 —BPOD OP4
10 - 8 - BPOD OP8
& ~
é\ = c ~

Infinity norms of models also match those of exact BT up to
approximately the rank of the output projection

Again, POD ‘catches up’ only at a high rank



Periodic array of localized
disturbances in center of channel

Large system (32x65x32), 133,120
states, exact BT intractable

Impulse response snapshots obtained o
via linearized DNS, Re=2000 initial condition

Complex initial transient develops
into a streamwise-constant structure®’
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Localized actuator - POD model performance

POD modes 1-3

Standard POD

KE growth

|
1

s L

0 500 1000 1500 2000 2500

time
5-order model with modes 1,2,3,10,17 much better than 5-
mode model with modes |-5.

Conclusion: some low-energy POD modes are
very important for the system dynamics.
Can’t naively use just the most energetic ones.

POD modes 4-5

21




KE growth

—_l
6))

1

o

O_

B

BPOD models energy growth
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Three-mode BPOD model excellent at capturing the energy growth

Rank 8 BPOD model sufficient to correctly capture the dynamics of
the first five POD modes, compared to at least 23 POD modes

Inclusion of some POD modes significantly deteriorates performance
(splitting of the pairs of oscillating modes)
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L ocalized actuator - modes

POD mode 1 BPOD mode 1 adjoint BPOD mode 1

BPOD and adjoint BPOD modes from OP5

Balancing modes and POD modes POD BPOD

look similar but the adjoint modes . e N
are in general quite different => a;(t) = @’ f(z))  a;(t) = %7 f(@))

different dynamics of models

SO 4 23
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BPOD |0-mode OP 50-mode model taken as ‘full system’

POD poorly captures low-pass behavior, spurious peaks

Need pairs of BPOD modes to capture peaks
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Re = 2000, POD 3—-mode

35
— full simulation
301 ——open loop
—closed loop
— C.L. full system
25¢
e
= 20t
o
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time

Using the localized actuator to control a
disturbance in channel center

Standard LQR control design

Using control gains from a 3-mode
BPOD model reduces energy growth by
a factor of 5

KE growth

KE growth

Re = 2000, BPOD 3-mode

35¢
— full simulation
30} ——open loop
—closed loop
— C.L. full system
25¢
201
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Re = 5000, BPOD 3—-mode, modes from Re = 2000

300¢
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— C.L. full system
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linear evolution of wall-normal velocity

nonlinear evolution at Eo/Ejam = 3.323 x 104

The spatial Fourier transform of
the x,z plane at y=0 illustrates the
perturbation evolution

In the linear case the
wavenumbers decay independently
after the large transient growth

Eiam = 0.2667 is the energy density
of the mean laminar flow

Transition for very small values of
initial energy Eo

The so-called B-cascade
[Henningson et al, 1993] is observed
in the nonlinear evolution - higher
spanwise wavenumbers are
introduced rapidly

26



Try to increase the transition threshold of a localized perturbation

(after Reddy et al)

The threshold is defined as the energy density of the initial perturbation
above which the flow transitions to turbulence

Threshold found to be at Eo = 1.614 x 10 of the mean flow energy of
the laminar profile, E.m = 0.2667

Perturbation energy

002 I T T T T
‘ ‘ \\A’M'
0.015¢ \
____E/E 8.307e-05
0 lam
~_E/E,__ _1.600e-04
0 lam
0.01¢ ___EJE__ 1.628e-04]]
0 lam
__EJ/E 3.323e-04
0 lam
0.005¢
\
O I \l\\"‘ = ! I
0 200 400 600 800 1000 1200 27

time



The feedback gains computed using LQR for the linear system are used
in a full nonlinear simulation with Eo/Eiam = 3.323 x 10

An ‘aggressive’ controller (R=0.1 in LQR) manages to suppress the
disturbance

—

—

-0.05 0 0.05 0 1
[ . N

Explanation: the BPOD modes do not have components at high 3, and are not able to
suppress high betas once they arise, but the ‘aggressive’ controller suppresses low [3
wavenumbers so that the higher 3’s emerge at very low amplitudes and decay linearly

Transition threshold increased by a factor of 17 for R=0.01

Work in progress: see how projection of full N-S equations onto linear BPOD modes will
model the perturbation evolution, and possibly design a nonlinear controller

28
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Leading edge vortices can provide high lift

MURI with Caltech (Colonius), IIT (Williams),

and Northeastern (Tadmor)

Goal: Stabilize these LEVs using feedback
control

High transient lift in pitching airfoils due to
dynamic stall vortex

Pitching airfoil
A

CL

Q)

Cx

static, no forcing
static, 10psi 25Hz
pr = 40 deg/s, no forcing

-20 0 20 40

o, [degrees]

leading




Dynamical behavior

With increasing AoA, flow undergoes a Hopf bifurcation

Reduced order models to stabilize unstable steady states at high
AOAs

C, at steady state

a Hopf bifurcation?

-
o0t
.

CL
0.2k e ................... .................... Unsteady ................... Steady ....... A
= 0 : : : : (Unstable)
¥ 0 5 1 O 1 5 20 25 30

Angle of attack «

Are there high-lift unstable steady states in low aspect ratio airfoils?




Model problem

Actuator: localized
body force

»

Re = 100 —

AoA =25 or 35 0

»

— -

-1 0 1

® A fast null-space based immersed boundary scheme for numerical
simulations

(T. Colonius and K. Taira, CMAME, 2007)
Steady state analysis
® Compute steady states using a wrapper around the DNS
N
—> p(utip) —

Define: g(u) = u’ —u

Ao Solve for zeroes of g(u) using Newton-GMRES

Barkley and Tuckerman, 99, Kelley, Kevrekidis, and Qiao,02,Ahuja et al.,‘07



Unstable steady state, AoA = 35

= Steady state lift close to the min. lift of the
unsteady case

= No leading edge vortex
= Trailing edge vortex causes reduced lift Unsteady, max lift

Steady, unstable 1 ——

1 J
1 L
0.9 N ————M

6700 00 6900 7000
0.95¢

é\ 2
0.9} ///’ \\ -
0 1000 2000 3000 4000 5000
0




Linear stability analysis

= Find the basis spanning the unstable eigenspace of the
linearized and adjoint flows

® Run the linear simulations with a zero initial condition + ol
108 random noise |

Right eigen-space

| eft eigen-space 0400 110 120 30 140 150




Reduced-order models for unstable systems

Decouple stable and unstable subspaces
Obtain balancing transformation for the stable subspace

i) =6 4) @)+ (E)

Snapshot based procedure: project out the unstable component at each
time step

Unstable
eigenvector

Vil

Stable subspace

Balanced truncation for unstable systems, Zhou et al.,’99



Model reduction: unstable system

Linearized NS egns, 10°

Vs = proj. of X5 onto

I

[

[

A [
U %(§)=(ﬁ 2)(§s)+(gs)u _,y=(9$ms) . POD modes
X, = unstable state

xs = Pag,
v Uld=1

Reduced order model, 10-50 eqns.

d {a;\ [(YTA® 0 [a, !B, Ys
u— &) ) ) ) (%)




Impulse response: stable subspace

= Project out the unstable component from the initial condition

Vorticity contours:
Positive in red and
negative in blue




---------------------------------------------------------

Projection
U———> z = Az + Bu - sy~ 0z >~onto POD ° 2 4
y== Mode 2
modes ode

= Four POD modes capture 95% energy

= Adjoint solves with these POD modes as
initial conditions
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Balancing modes: stable subspace

Mode | Mode 2

Balancing’”

modes °
-0.5

Adjoint
modes




Mode

velocity

| results: controlled case

> q =0y

Control based on a 10-
mode model

Gain K using LQR

DNS —©—
10-modeX—

0.08
0.069
0.04 !
0.02

Lul

-0.02[

-0.04

| Il Il | Il

with control

10 15 20 25 30 35

50

20 30 40 50

60

70



Control in full nonlinear system:
close to steady state

Results of an 8-mode model

20 -100 0 100 200 300 400 500 600 700

o 0 0 100 200 0 40 50 60 700
time




Feedback stabilization at AoA=25

= Full state feedback

= Large domain of attraction even
in the full NL system

= Controller suppresses the vortex
shedding

No control

1.05¢

0.9 ]
6700 6800 6900 7000

0.95¢

0s) —_ K 4 T

00

0 1000 2000 3000 4000 5000
time
Control on
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Evolution history of thickness for temporal shear layer
(spatially periodic):

Time
Model initial linear growth, saturation, pairing, and eventual

viscous diffusion

[Mingjun Wei, CW Rowley, |JFM, to appear, 2008]
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Scale POD modes dynamically in y direction to account
for shear layer spreading

Scaling invariants:

divergence of velocity field
inner product

Key idea: template fitting

Main result: an equation for the shear layer spreading rate:

as usual, also get equations for time coefficients of POD modes

45



Write solution in scaled reference frame
q = (u7 U)
qa(z,y,t) = G(g)a(z, g(t)y,t)

Choose G(g) = { L0 } : div q = div q

0 1/g
Expand scaled variable g in terms of POD modes

Q($ y,t) = +Za3 %03 L y

Advantage of the scallng. capture similar-looking
structures as shear layer spreads

Advantage of divergence-invariant mapping:
automatically satisfy continuity equation; simplify
pressure term

46



How do we choose the scaling g(t)?

Choose g(t) so that q(x,y,t) lines up best with a
preselected template (here, the base flow):

d

ds HQ(xayat) — 11()(213, h(S)y)H2 =0

s=0
for any curve A(s) > 0 with A(0) = 1

This means the scaled solution q(z, y, t) satisfies

% q—ug ) =20

Geometrically, the set of all “properly scaled” functions q is
an affine space throughug and orthogonal to y0,uy

This enables one to write dynamics for how the thickness
g(t) evolves g <fgl(il),y(9yuo>

9 (yOytu, yOyup)

47




How does g(t) evolve in time!

We have a constraint (q(z,y,t) lines up best with template ug):

Differentiate:

8110 (’9(1 B
Yoy ot )

Use equations of motion

Jq . g 0q L
oa _ 904
g = 1@~ g — G1/9)G(g, 9z, y,1

This gives an equation for g:

<fgl(ﬂ’)7 yay“0>

J
g

YOy, yOyuo)

48



Base flow with small perturbation

—y [Re
Base flow: ug = Ueerfc(n), M= 20\ %

Perturbation is along the unstable eigenfunction of the linearized
problem

Consider three separate cases

Self-similar solution (no perturbation)

Vortex pairing transient (perturbation with k=2):
vortex roll-up
pairing
k=1 mode arises through pairing

49



Only one equation left for g:

. 1 dy | 7 "
9= Reng? g T g(t) "

Recovers exact theoretical growth rate for Stokes
problem:

L I I
2000 3000

Time

I
4000

5000
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Movie of DNS

® Vortex pairing (initial condition with k=2) Re =200

kK = 2 simulation

Viscous
i diffusion
4 |- T | |
Ow |
5 | |
‘T 5w0 I 1
skl 1|
= \ \ ‘
i | . ‘
> of A Saturation
| [ |
“ | -~ . . |
: L Pairing & growth |
— | [ |
| ] . |
.1V Saturation
\ \ \ ‘
4 Growth
10 Lol \1 OIOO\ I | .\ L \soloow L \4 Oloow | \Soloo
. | | | Ime
0 10 15
X
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Model results: k=2

® Thickness and amplitude of ® Thickness and amplitude of
POD modes for k=2 initial POD modes for k=2 initial
condition: projection of full condition: low-dimensional
simulation model

10 — 10

e [ I
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
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_60

DNS v.s. Model

® Comparison of simulation and model results

dns-proj

10

15

_ model
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Approximate balanced truncation

Approximates exact balanced truncation to as high accuracy as
desired, using snapshots from linearized and adjoint simulations

Computational cost similar to POD, once snapshots computed

For a given number of modes, transients and frequency response
much more accurately captured than POD models of same order

Extension of basic approach to model unstable linear systems

Feedback controllers designed from these models perform well,
even on full-order, nonlinear systems

Extensions to (weakly) nonlinear systems straightforward
Dynamically scaled POD modes

For systems with self-similar behavior, dynamic scaling decreases
number of modes required

Temporal shear layer dynamics modeled with 4 complex modes,
including linear growth, saturation, pairing, and viscous diffusion
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