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Introduction  

 Zero-Pressure-Gradient: 
 Tollmien-Schlichting waves 

Adverse-Pressure-Gradient,  Separation bubbles: 
  Kelvin-Helmholtz instability 

   “Global” non wave-like instability modes 

Werlé, in ”Album of fluid motion”, Van Dyke 

Bradshaw, in ”Album of fluid motion”, Van Dyke 

                                                    Gallaire, Marquillie & Ehrenstein, 2007 

Instability mechanisms in boundary layers 
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Introduction (II)  

Orr-Sommerfeld 

•  Parallel flow assumption 

  1D basic flow 

•  Ansatz: 

•  Temporal / Spatial EVPs 

•  “Local” Analysis 

BiGlobal 

•  Non-parallel 2D basic flow 

•  Ansatz: 

•  Temporal EVP 

Spatial growth recovered in 
the     amplitude functions 

•  “Global” Analysis 

Modal linear instability approaches 

Non-parallel 
corrections 

PSE 

… 

Theory  

 Introducing into the direct linearized Navier-Stokes equations 
the decomposition 

 and into the adjoint linearized Navier-Stokes equations the 
decomposition 

 one obtains, respectively, 

Direct & Adjoint  BiGlobal EVP 
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Theory (II) 

    where 

     and 

The Direct BiGlobal EVP 

Theory (III) 

 where 

The Adjoint BiGlobal EVP 
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Theory (IV) 
The Boundary Conditions for the Adjoint EVP 

The solvability condition for the direct/adjoint EVPs is: 

Looking to the “bilinear concommitant”: 

The condition is trivially accomplished if: 

•  Amplitude functions for (at least) one of them vanish: 

   Dirichlet boundary conditions                 , 

The condition is trivially accomplished if: 

•  Amplitude functions for (at least) one of them vanish: 

   Dirichlet boundary conditions                 , 

•  Periodicity is imposed to the domain 

The condition is trivially accomplished if: 

•  Amplitude functions for (at least) one of them vanish: 

   Dirichlet boundary conditions                 , 

•  Periodicity is imposed to the domain 

But hardly accomplished otherwise !!! 

The BiGlobal spectrum 

•  Great number  O(102 - 103) of temporal eigenvalues 

•  Families of eigenmodes (where exist) not easy to identify 

•  Physical mechanisms not determined  

How to classify the eigenmodes ? 
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Parallel flow analysis 

Basic Flow: Artificial parallel Blasius 
Mack’s Case: Re = 580, α = 0.179    (Mack  JFM 1976) 

O   OSE  α = 0.179 

O   OSE  α = 2 x 0.179 

O   OSE  α = 1/2 x 0.179 

O   OSE  α = 3/2 x 0.179 

 +    BiGlobal 

Comparison with temporal OSE 

Streamwise extension of the domain:  Lx = 4 π / 0.179  
Periodic boundary conditions 

Rodríguez & Theofilis AIAA 2008-4148 

Towards non-parallelism  

Case: Reδ*=450 at inflow, Reδ*=700 at outflow 

Analysis 1: 
   - Basic Flow: Artificial parallel Blasius 
   - Boundary conditions: Robin* at inflow & outflow 

Analysis 2: 
    - Basic Flow: Artificial parallel Blasius 
    - Boundary conditions: Robin* at inflow & extrapolation at outflow 

Analysis 3: 
    - Basic Flow: Real Blasius boundary layer 
    - Boundary conditions: Robin* at inflow & extrapolation at outflow 

* Robin boundary condition of Ehrenstein & Gallaire JFM 2005: 

Rodríguez & Theofilis AIAA 2008-4148 
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Towards non-parallelism 

Case: Reδ*=450 at inflow, Reδ*=700 at outflow 
Robin boundary condition evaluated at:  ω0 = 0.13 

Analysis: 

3   O  Real Blasius,  
     Robin + Extrapolation 

2   +  Parallel Blasius,  
     Robin + Extrapolation 

1   X  Parallel Blasius,  
     Robin + Robin 

Rodríguez & Theofilis AIAA 2008-4148 

Non-parallel basic flow 

Parallel basic flow:   (Artificial parallel Blasius BL) 
   - The OSE eigenvalues are recovered 

Cuasi-parallel basic flow:  (Real Blasius BL) 
    - The same families of eigenvalues are recovered 

Non-parallel basic flow:  (Separation bubble in BL) 
    - What is to be recovered? 
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Non-parallel basic flow 

Boundary Layer transformation: 

          

Separated states recovery:  
 - Reyhner and Flügge-Lotz approximation 
 - Displacement thickness imposed 

Rodríguez & Theofilis AIAA 2008-4148 

Global Modes in the LSB 

Case: Reδ*=450 at inflow, Reδ*=700 at outflow, Separation Bubble 
3D Analysis:  0 < β < 1 
Boundary conditions: Dirichlet at inflow & Extrapolation at outflow 

β = 1 
Rodríguez & Theofilis AIAA 2008-4148 
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Global Modes in the LSB (II) 

u  -  Direct 

w  -  Direct 

u  -  Adjoint 

w - Adjoint 

The steady 3D global mode – Amplitude functions  (β = 1) 
Case: Reδ*=450 at inflow, Reδ*=700 at outflow, Separation Bubble 
3D Analysis:  0 < β < 1 
Boundary conditions: Dirichlet at inflow & Extrapolation at outflow 

Rodríguez & Theofilis AIAA 2008-4148 Theofilis, Hein and Dahlmann 2000 

w  -  Adjoint 

Steady Global Mode 

Present in different geometries 
• NACA 0012 (Theofilis, Barkley and Sherwin, 2002) 

•  LPT blade  
      (Abdeseemed, Sherwin and Theofilis 2004) 

BF u w 

BF 

w 

• Bump 
(Gallaire, Marquillie and Ehrenstein 2007) 

BF 

w 
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The dominant mechanism? 
Two different classes of eigenmodes: 

• Spatial amplification rates of the global mode are substantially 
smaller than those of the shear layer 

• The global mode can be temporally unstable 

Theofilis, Hein & Dallmann 2000 

Waves amplified by the shear layer Steady “global” mode 

TS & bubble interaction 

Case: Reδ*=450 at inflow, Reδ*=700 at outflow, Separation Bubble 
3D Analysis:  0 < β < 0.30 
Boundary conditions: 

Inflow:  
• Dispersion relation from local spatial analysis:   D ( α, ω, β, Re ) = 0 
• Gaster-type transformation  

Outflow: Linear extrapolation 

Same BC as 2D Ehrenstein & Gallaire’s 
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TS & bubble interaction 

Case: Reδ*=450 at inflow, Reδ*=700 at outflow, Separation Bubble 
3D Analysis:  0 < β < 0.30 
Boundary conditions: Dispersion relation inflow, extrapolation outflow 

β = 0.15 

TS & bubble interaction 
Amplitude functions for plane (2D) TS waves 
 β = 0,  ω = 0.0963 – i 0.0023 

Amplitude functions for oblique (3D) TS waves 
 β = 0.15, ω = 0.1003 – i 0.0077,  Ψ = 31º 
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TS & bubble interaction 

Amplification of Tollmien-Schlichting eigenmodes  

A B 

•  Max spatial amplification ~ 10 – 20 
   orders of magnitude smaller than in DNS 

•  Max amplified spatially is not the  
   least damped temporally 

•  Study of wave-packet evolution 
   required to reproduce physics 

β = 0.15 

A : ω = 0.07201 – i 0.0019 

B  : ω = 0.1003 – i 0.0033 

S E 

Summary  

• Parallel flow asumptions: OSE eigenvalues recovered 

• Cuasi-parallel flow: Same structure of the spectrum 

• Non-parallel flow: New family of non wave-like modes 

• Mechanisms competing: 

•  Global mode (one eigenmode alone)  self-excited 

•  Incoming wave-packets (several eigenmodes) amplified by 
the shear layer 


