

Large Eddy Simulation of Flow Around an Airfoil

László Nagy BME Department of Fluid Mechanics 4 May 2009

RAF6-E airfoil geometry

The project evaluation:

- #1 initial idea: fan + CAA
- #2 flow field with LES
- #3 fan \rightarrow airfoil
- #4 LES with zonal approach
- #5 Zonal/hybrid RANS/LES approach in two steps

Airfoil geometry	RAF-6E	
Reynolds number Re = $\frac{U_0c}{v}$	1.22·10 ⁵	
Mach number	~0.06	
Incidence	5°	

- Flat pressure side
- Available in-house measurements data
- Max. thickness at 0,103c
- Max. thickness location is 0,35c.
- LE radius is 0,0115c.
- TE radius is 0,0076c.

Grid parameters

- O-H type, structured mesh
- Hexahedron cells
- First cell at LE: 2.5*10⁻⁴c
- First cell at TE: 4.1*10⁻⁴c
- y+<1
- Cell size growth appr. 7%
- Velocity inlet profile coming from the previous RANS with k-e simulation

Wake length	1.5c	
Domain length	3c	
Domain width	Depend on the case	
Spanwise extension (L _z)	Spanwise resolution	Grid size
1c	50	2 006 150
0.5c	50	2 006 150
0.25c	50	2 006 150
0.125c*	50	2 006 150
0.25c*	25	1 003 075
0.5c*	50	2 414 150
0.5c*	100	4 012 300

Solver

- Finite volume solver ANSYS Fluent 6.3 & ANSYS Fluent 12.0.4 beta
- **Cell centred** collocated variable arrangement
- Constant density solver
- **Segregated** solver for sequential solution for governing equation
- □ Bounded Central Differencing (BCD) Scheme for momentum
- Pressure in momentum equation was discretised with standard first-order and second order scheme
- □ The pressure and the velocity coupling in the momentum equation was absolved with the Fractional Step Method (**FSM**)
- The time discretization was realised with the non-iterative time-advance (NITA) scheme
- The turbulence modelling was realized with the LES approach, based on the Smagorinsky Subgrid-Scale model using the dynamic approach
- □ The time step for all of the simulation is set to match the required aerodynamic time resolution, to follow the Courant-Friedrichs-Lewy (CFL) criteria
- □ The time step was depend on the case. The maximum CFL number was smaller than 0.9 for every cases in each time instance

Results #2, postprocessing line

□ Time averaged pressure

Results #3, RMS

Part of the second

 W_{rms}^2/U_{ref}^2

Postprocessing the last four simulations

- Grid dependency test
- □ Spatial average of wall shear-stress on the airfoil
- **—** ...

Thank your attention!