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Numerical simulation of self-sustained oscillations

Introduction I.

� Edge tone: basic flow configuration for
organ pipes and recorders; 

� Good example for self-sustained flows;

� Y-shaped pipe branches, tongue of spiral
casing in turbomachines, etc.;

� Good model case for aeroacoustic
research;
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Introduction II.

� Plane jet & wedge-shaped object produces periodic vortex
shedding;

� Behaves as a dipole sound source;

� Nonlinear phenomena, hysteresis;

� f ~ v / hn (n = 1…1.5)
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Powell, A. – Re-St relationship, stages
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Stage I. Re = 200 visualization
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Stage I. Re = 200 simulation
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Stage II. Re = 400 visualization
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Stage II. Re = 350 simulation
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Cavity tone
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Self-sustained oscillations – general scheme

Self sustained oscillations: closed feedback circuits

Shear flow (jet or shear layer) 

Growing instabilities

Fluctuating force on an object

Acoustic signal (or vorticity) generates

new instability wave at the exit
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Self-sustained oscillations – other examples

� Jet-slot;

� Jet-surface;

� Jet-ring;

� Jet-cylinder;

� Jet-hole;

� Shear layer-edge;
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CFD parameters

� laminar, incompressible, 2D flow;

� fluid: air@ 25C°

� second order spatial and temporal discretization;

� Optimum timestep: determined after extensive studies

using time signals, spectra and analytical methods;

� block-structured mesh, careful mesh study;

� Total time of run: determined by the frequency resolution. 

Requirement: about 1% of maximum frequency. In addition

~0.1 s for the transient part which is cut off for the FFT;

� Initial condition: no influence;
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Selected results for the edge tone I.
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Selected results for the edge tone II.
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Selected results for the edge tone III.
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Comparison of visualisation and computation I.
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Comparison of visualisation and computation II.
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Selected results for the cavity tone I.

� Rossiter modes: where γ is a 

phase delay and κ is a dimensionless disturbance

wave propagation speed;

� Relevant length scale: incoming momentum 

thickness;

� With increasing speed or cavity length: 

steady flow shear layer mode wake mode

κγ ⋅−= )(n
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Shear layer mode
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Wake mode
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Selected results for the cavity tone II.
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Selected results for the cavity tone II.
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Selected results for the cavity tone IV.

Fourier analysis of the velocity field

high frequency

low frequency
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Summary
� Having performed a large amount of accurate

simulations, we succeded to reproduce the stages
both for the edge tone and the cavity tone; 

� Very good agreement was found between
experiments, computations and literature in both
cases (with the exception of the third stage of the
edge tone);

� It was demonstrated that the exponent of the h-
dependence of the edge tone is -1 and not -3/2;

� Several new phenomena were detected, such as the
appearance of a „modulating frequency” in the
cavity tone case


