Adaptation of Pressure Based CFD Solvers for Mesoscale Atmospheric Problems

<u>Gergely Kristóf Ph.D.</u>, Miklós Balogh, Norbert Rácz 4-th May 2009.

Advantages of a CFD based model

model conversion interface

• The bidirectional interface is a source of numerical errors eg. it can cause partial reflection.

Gravity waves ??

Thermal convection (UHIC) ??

grid refinement

- Better geometrical description
- More general turbulence models
- Easy customization
- Advanced pre- and post processing

Methodology

Incompressible CFD model (FLUENT) + transformation system + customized source terms

Mathematical description

$$\tilde{\rho} = \rho_0 - \rho_0 \beta (\tilde{T} - T_0)$$

$$\nabla \cdot \mathbf{\bar{v}} = 0$$
Customized

$$\frac{\partial}{\partial t} (\rho_0 \mathbf{\bar{v}}) + \nabla \cdot (\rho_0 \mathbf{\bar{v}} \otimes \mathbf{\bar{v}}) = -\nabla \tilde{p} + \nabla \cdot \mathbf{\tau} + (\tilde{p} - \rho_0) \mathbf{g} + \mathbf{F}$$

$$\frac{\partial}{\partial t} (\rho_0 c_p \tilde{T}) + \nabla \cdot (\mathbf{\bar{v}} \rho_0 c_p \tilde{T}) = \nabla \cdot (K_t \nabla \tilde{T}) + S_T$$

$$\frac{\partial}{\partial t} (\rho_0 k) + \nabla \cdot (\rho_0 \mathbf{\bar{v}} k) = \nabla \cdot \left(\frac{\mu_t}{\sigma_k} \nabla k\right) + G_k + G_b - \rho_0 \varepsilon + S_k$$

$$\frac{\partial}{\partial t} (\rho_0 \varepsilon) + \nabla \cdot (\rho_0 \mathbf{\bar{v}} \varepsilon) = \nabla \cdot \left(\frac{\mu_t}{\sigma_\varepsilon} \nabla \varepsilon\right) + \rho_0 C_1 S \varepsilon - \rho_0 C_2 \frac{\varepsilon^2}{k + \sqrt{v\varepsilon}} + C_{1\varepsilon} \frac{\varepsilon}{k} C_{3\varepsilon} G_b + S_{\varepsilon}$$
Transformed variables
$$\tilde{p}, \tilde{T}, \tilde{p}, \tilde{\mathbf{v}}, \tilde{z}$$

Transformation expressions

 $\mathbf{T} = \mathbf{\widetilde{T}} - \mathbf{T}_0 + \mathbf{\overline{T}}$

$$\mathbf{p} = \frac{\mathbf{p}}{\mathbf{p}_0} \cdot \mathbf{\tilde{p}} + \mathbf{\bar{p}} = \mathbf{e}^{-\zeta z} \cdot \mathbf{\tilde{p}} + \mathbf{\bar{p}}$$

 $\rho = \tilde{\rho} - \rho_0 + \bar{\rho}$

$$z = -\frac{1}{\zeta} Ln(1-\zeta \tilde{z})$$

$$w = \frac{\rho_0}{\overline{\rho}} \, \widetilde{w} = \widetilde{w} \, e^{\zeta z}$$

Equilibrium profiles

for proper elimination of the hydrostatic pressure gradients

Summary of source terms

Related publications

- [1] Kristóf G, Rácz N, Balogh M: Adaptation of Pressure Based CFD Solvers for Mesoscale Atmospheric Problems, *Boundary-Layer Meteorol, 2008.*
- [2] N.Rácz, G.Kristóf, T.Weidinger, M.Balogh: Simulation of gravity waves and model validation to laboratory experiments, *CD*, *Urban Air Quality Conf. Cyprus, 2007.*
- [3] **G.Kristóf, N.Rácz, M.Balogh**: Adaptation of pressure based CFD solvers to urban heat island convection problems, *CD, Urban Air Quality Conf. Cyprus, 2007.*
- [4] **G.Kristóf, N.Rácz, Tamás Bányai, Norbert Rácz:** Development of computational model for urban heat island convection using general purpose CFD solver, *ICUC6, 6-th Int.Conf.on Urban Climate, Göteborg, pp. 822-825., 2006.*
- [5] **G. Kristóf, T. Weidinger, T. Bányai, N. Rácz, T.Gál, J.Unger**: A városi hősziget által generált konvekció modellezése általános célú áramlástani szoftverrel példaként egy szegedi alkalmazással, *III. Magyar Földrajzi Konferencia, Budapest, 2006.,* Bp, CD
- [6] Kristóf G., Rácz N., Bányai T., Gál T., Unger J., Weidinger T.: A városi hősziget által generált konvekció modellezése általános célú áramlástani szoftverrel– összehasonlítás kisminta kísérletekkel A 32. Meteorológiai Tudományos Napok előadásai. Országos Meteorológiai Szolgálat, Bp., 2006
- [7] **Dr. Lajos T., Dr. Kristóf G., Dr. Goricsán I., Rácz N.:** Városklíma vizsgálatok a BME Áramlástan Tanszékén, hősziget numerikus szimulációja VAHAVA projekt (A globális klímaváltozás: hazai hatások és válaszok) zárókonferenciája Bp. CD, **2006**
- [8] Rácz N. és Kristóf G.: Hősziget cirkuláció kisminta méréseinek összehasonlítása saját fejlesztésű LES modellel Egyetemi Meteorológiai Füzetek No. 20 ELTE Meteorológiai Tanszék, Bp. 173-176, 2006.
- [9] **M. Balogh, G. Kristóf**: Automated Grid Generation for Atmospheric Dispersion Simulations, *pp.1-6.*, *MICROCAD konferencia, Miskolc, 2007.*

Model validation

analytical solutions
 laboratory experiments
 a standard test case
 a full scale event

Gravity waves

Gyüre, B. and Jánosi, I.M., 2003. Stratified flow over asymmetric and double bell-shaped obstacles. *Dynamics of Atmospheres and Oceans 37*, 155-170.

Thermal convection (UHIC)

A.Cenedese, P.Monti: Interaction between an Inland Urban Heat Island and a Sea-Breeze Flow: A Laboratory Study, 2003.

Down-burst test case

Straka et al.1990, Reinert 2007 -

Results

Compressible version

Simplified (incompressible)

Down-slope windstorm

Boulder 1972 jan.

Measured velocity field

Measured potential temperature

Two application examples

Dispersion of pollutantsAnalyses of instabilities

Meso scale atmospheric dispersion

Orography of Pilis mountain

Evolution of surface concentration

Micro-scale atmospheric dispersion

Chimney height 180 m Wine Standard (stable) temperature profile Inject

Wind speed: 3m/s Injection velocity: 5 m/s

Von Kármán vortices behind a volcanic island

Satellite image about Guadalupe island

First CFD results

Investigation of instabilities

Kelvin-Helmholtz instability

Comp. domain: 25 km x 5.5 km Temperature difference 20 ℃

Cloud formation:

Conclusions

- An easy to implement method has been developed for taking into account:
 - stratification effects,
 - adiabatic heat,
 - Coriolis force,
 - compressibility.
- The model has been validated against:
 - some analytic solutions,
 - laboratory experiments,
 - reference calculations,
 - in field measurements.
- Further effort is necessary for including:
 - moisture transport and phase changes,
 - porous drag models,
 - radiation heat transfer,
 - surface energy balance.
- Foreseeable applications:
 - local convections (e.g. UHIC, see breeze, valley breeze),
 - dispersion of pollutants (e.g. due to traffic, industry, chemical vapors),
 - meteorological research (e.g. gravity waves, cloud formation),
 - assessment of the wind power potential,
 - simulation of catastrophes (e.g. large fires, volcanism).

