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• Multi scale problem

• Temporally and spatially

• Fine scales responsible for dissipation

• Kinetic energy lost due to molecular diffusion                                                           
and is responsible for drag

• Dispersion and mixing

• High spatial resolution required to compute / measure them

• Models of fine scales required for LES
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Scope of the study

Is the interaction between large and fine scales “universal”? 

• TKE transferred along the energy cascade from large to fine 
scales [RICHARDSON 1926; KOLMOGOROV 1941] 

• Large scales contain most of the energy (velocities)

• Small scales responsible for dissipation (velocity gradients)

• Requires multi-scale data resolving large and fine scales for 
different turbulent flows

• Far field of planar 2D mixing layer at different Reynolds numbers

• Examine multi-scale interaction of fine-scales conditioned on 
large scales

• Convection velocities

• Probability density functions pdfs
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Planar mixing layer

• Evidently multi-scale

• Convection velocities obtained 
by cross correlation

• Is the convection velocity scale 
dependent?
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• Adjacent vectors 
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Planar mixing layer

• Different behaviour for positive and negative fluctuations

• Longer tails for negative fluctuations

• Reynolds number effect?
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Turbulent axisymmetric jet
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“Interaction between strain and rotation intrinsic to the very 
nature of three dimensional turbulence” [TENNEKES & LUMLEY 1972]
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• Quantity                is the rate of enstrophy amplificationωiSijωj
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Three dimensional data

“Interaction between strain and rotation intrinsic to the very 
nature of three dimensional turbulence” [TENNEKES & LUMLEY 1972]
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4
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• Quantity                is the rate of enstrophy amplification

• Excellent metric for examining the interaction between strain-rate 
and rotation :

ωiSijωj

ωiSijωj = ω2si (êi · ω̂)2
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• Alignment between     and    crucial to enstrophy production rate

- parallel = enstrophy production

- perpendicular = enstrophy destruction
“Traditional”                   the summation of enstrophy producing and 
enstrophy destroying data points
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ωiSijωj > 0

• Predominantly “sheet-like”

• Strongly rotational regions favour 
enstrophy production

• Strongly dissipative regions tend to 
coincide with enstrophy producing 
regions
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• Predominantly “sheet-like”
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ωiSijωj < 0ωiSijωj > 0

[BUXTON & GANAPATHISUBRAMANI 
(2010) J. Fluid Mech. 651 483-502]

• Predominantly “sheet-like”

• Strongly rotational regions favour 
enstrophy production

• Strongly dissipative regions tend to 
coincide with enstrophy producing 
regions

• Unstructured

• Strongly rotational regions do not 
favour enstrophy attenuation

• Strongly dissipative regions do not tend 
to coincide with enstrophy attenuating 
regions
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Conclusions

• Multi-scale PIV experiment performed in planar mixing layer

• Asymmetry in fine-scale         for positive and negative fluctuations

• Different behaviour for fine-scale         of positive and negative fluctuations

• Reynolds number effect? 

• Need to consider power spectral densities for the fine-scales conditioned on large 
scale fluctuations

• Are convection velocities scale dependent?

• 3D velocity gradient data reveals strain - rotation interaction

• Interaction directly leads to enstrophy amplification

• Sustains turbulence in shear flows

• Look for “universality” of interaction by examining different shear flows

pdfs

pdfs



Ongoing / future work

• Volumetric three dimensional velocimetry

• Fully three dimensional PIV data in a volume

• Dual plane stereoscopic particle image velocimetry

• Three dimensional velocity and velocity gradient data in a plane

• Direct numerical simulations

• incompact3d code run on HECToR

• Large eddy simulations

• streamLES run on HECToR


