High-cycle thermal fatigue in mixing Tees. Large-Eddy simulations compared to a new validation experiment

Johan Westin Vattenfall Research and Development AB SE-81426 Älvkarleby, Sweden

Carsten 't Mannetje Forsmarks Kraftgrupp AB SE-74203 Östhammar, Sweden

Farid Alavyoon Forsmarks Kraftgrupp AB SE-74203 Östhammar, Sweden **Pascal Veber, Lars Andersson** Onsala Ingensjörsbyrå AB SE-43437 Kungsbacka, Sweden

Urban Andersson, Jan Eriksson, Mats Henriksson Vattenfall Research and Development AB SE-81426 Älvkarleby, Sweden

Claes Andersson Ringhals AB SE-43022 Väröbacka , Sweden

Onsala Ingenjörsbyrå AB Computational solid and fluid mechanics

Outline

- Background
 - Previous work by the authors
- New experimental validation test case (2006)
- Computational results (Fluent)
 - Mesh dependence study
 - Large Eddy Simulations (LES) compared with Detached Eddy Simulations (DES)
- Concluding remarks

Background (1) Introduction

- Temperature fluctuations can cause thermal fatigue
- Interesting case for CFD-validation (unsteady flow, large fluctuation levels)
- Static mixers or thermal sleeves can be installed to reduce the risk for thermal fatigue (but expensive)
- Desirable with accurate predictions of the risk for thermal fatigue
- Structural analysis require boundary conditions
 - 1) Amplitudes of temperature fluctuations
 - 2) Frequencies of temperature fluctuations
 - 3) Heat transfer to the wall

Static mixer (MIX-331)

Background (2) Previous work by the present authors

- Model test of a plant specific T-junction performed in 2002
 - Geometry including upstream bends
 - Temperature fluctuations near the wall measured with thermocouples
 - Several test cases (flow ratios)
- Computational studies
 - Unsteady RANS failed to predict the temp. fluctuations
 - LES showed promising results
 - Still discrepancies (amplitude and frequencies overpredicted)
 - Complicated and uncertain inflow boundary conditions
- Need for more validation data and well-documented inflow boundary conditions

New model tests for validation of CFD (2006) Test rig overview

- Fully developed pipe flow in the cold water inlet pipe (>80 diameters straight section upstream the T-junction)
- Pipe diameters 140 mm (cold) and 100 mm (hot)

- Focus on one test case
 - ΔT≈15°C
 - Constant flow ratio $Q_{cold}/Q_{hot}=2$
 - Equal inlet velocities in the cold and hot water pipe

T-junction model and measurements

- Thermocouples
 (Ø0.13 and Ø0.07 mm)
 - Located 1 mm from the wall
 - Frequency response 30-45 Hz

- Lased Doppler Velocimetry (LDV)
 - Inlet-BCs at x/D=-3 and z/D=-3.1
 - Profiles at x/D=2.6 and 6.6
 - Measurements at $\Delta T \approx 15^{\circ}C$ and isothermal
- Single-point Lased Induced Fluorescence (LIF)
 - Conc. measurements at isothermal conditions

Flow visualization: 50%, 100% and 200% flow (Reynolds number: 0.5×10^5 , 1.0×10^5 and 2.0×10^5)

Spectra of temperature fluctuations at x=4D Various flow rates

Performed simulations and numerical settings

Influence of computational mesh					Influenc
Case	#cells	t _{samp} (s)	Note	Organization	1) Vort 2) Nou
T1vm- FKA	0.52M	29.0	4 boundary layer cells	Forsmark	3) Scal
T1Bvm	0.45M	21.8	no BLcells	Onsala Vattenfall R&D	11011
T2vm	0.93M	19.6	More uniform	Onsala Vattenfall R&D	<u>Compar</u> LES: W
T3vm	9.5M	8.3	Similar, but refined	Onsala	Loca DES: S

Influence of unsteady inflow-BC

- 1) Vortex method
- 2) No perturbation
- Scaled isotropic turbulence
 from separate input files

<u>Comparison LES-DES</u> ES: WALE (Wall-Adaptive

ES: WALE (Wall-Adaptive Local Eddy viscosity model)

DES: SST k-w model

Numerical settings

- Non-iterative time advancement (NITA): 2nd order, implicit
- Pressure-velocity coupling: Fractional step
- Momentum eq: Bounded central differences
- Pressure: PRESTO
- "Law-of-the-wall" applied near the wall (y+ typically 20-50)

Instantaneous temperature fields

Simulation, 9.5 Mcell

Temperatures near the pipe wall Different computational mesh

Velocity fluctuations at the pipe centerline Different computational mesh

Velcoity spectra, pipe centreline at x=2.6D Different computational mesh

u-component (=streamwise)

v-component (=spanwise) (not measured)

Mean velocity profiles, x/D=2.6 Different computational mesh

Velocity fluctuations, x/D=2.6 Different computational mesh

Mean and fluctuating temperatures Comparison LES vs DES (mesh 0.93 Mcell)

Time signals Comparison LES vs DES (x/D=4)

Onsala Ingenjörsbyrå AB Computational solid and fluid mechanics

Modelled turbulent viscosity Comparison LES vs DES

Color scale: 0-0.2 kg/(m·s)

Concluding remarks

- Good agreement between simulation and model test results, also with fairly coarse computational mesh
 - Both fluctuation amplitude and spectral distribution show good agreement
 - Considerably better than in previous experiment/simulations
 - (Indicate that the current flow case is quite "forgiving" for LES)
- Insensitive to variations in the (unsteady) inlet boundary conditions
- <u>However</u>: Clear improvement of the results with a refined mesh
 - Improved results in the entire computational domain with 9.5 Mcell
- Still insufficient resolution near the walls
 - Erroneous prediction of the near-wall mean velocity profile and the wall-shear stress as compared to fully developed turbulent pipe flow
 - Detached Eddy Simulations (DES) results in better near-wall profiles, but the tested model is too dissipative in order to give good predicition of the temperature fluctuations

Interested in the Vattenfall T-junction test case?

- The experimental data can be made available for those who are interested to perform simulations
- In return we expect to get access to the computational results
- No restrictions to publish your results (reference to the source of the data)
- Presently computations are carried out by NRG, The Netherlands (Ed Komen et al.) and ANSYS, Germany (Frank et al.)

If you are interested to use this test case for CFD-validation, contact Johan Westin, Vattenfall Research and Development AB E-mail: johan.westin@vattenfall.com

