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Abstract

In the first part of this paper, a two-phase flow model
for sediment transport is introduced, based on a mix-
ture theory for fluid–saturated granular materials. This
model consists of balance laws of mass and linear mo-
mentum for both the sediment and the interstitial fluid
and an additional equation for the distribution of particle
concentration. The second part of this paper is devoted
to numerical aspects of the two-phase flow model in hand
and, more specifically, we present a multi-phase projec-
tion method, endowed with an interface detection-and-
treatment methodology, for its numerical integration. In
the final part of this paper, results from numerical studies
on gravity–driven flows of erodible, subaqueous granular
beds down inclined planes are presented. These results
constitute important sanity tests for the assessment of
the predictive capacity of the two-phase flow model in
hand.

1 Introduction

Sediment transport in coastal areas causes significant
morphological changes that can amplify the effects of
floods and related inundation hazards. Such unmiti-
gated, and often undesirable, morphological changes in-
crease the risk of failure of near-shore structures. There-
fore, they can result in human and animal fatalities, sub-
stantial economic losses, and alteration of ecosystems.
Coastal sediment transport is induced by the inter-

action between turbulence and the solid particles that
comprise the sediment. Due to the permeability of the
sediment, the interstitial fluid (water) can penetrate it,
thus forming a heterogeneous, immiscible mixture. As
water flows through and over the sediment, it exerts both
normal and shear stresses that engender its erosion.
Modelling of sediment transport is a challenging is-

sue because of the complex interactions between water
and sediment, the non-Newtonian behaviour of the lat-
ter, and the multitude of spatial and temporal scales that
are associated with the flow. Traditionally, in sediment
transport studies, the motion of the fluid is modelled
either via the shallow water equations [1], or the Boussi-
nesq equation [2], or the Navier-Stokes equations [3].
These equations are then coupled with (semi)empirical
formulas for bed sediment transport [4] and an advec-
tion/diffusion equation for the suspended sediment [5].
In fact, as regards bed sediment transport, the employ-
ment of (semi)empirical formulas extends to both the
incipient motion and the sediment flux [6].
Nonetheless, such single-phase flow models and their

incarnations, cannot properly account for the interac-

tions between the solid particles and water. To over-
come this difficulty, one has to resort to two-phase flow
models. The compelling advantage of such models is
that they take into consideration the dynamics of both
phases and subsume mass and momentum balance laws
that are valid both in and over the sediment. Typically,
the derivation of two-phase models is based either on
an averaging or on a mixture-theory approach. The av-
eraging approach employs aspects from kinetic theories
and is based on modifying the equations of motion of
a single constituent to account for the presence of the
other constituents and then averaging these equations
over space and/or time. On the other hand, mixture the-
ories treat the mixture as a multi-component continuum
and adopt a non-equilibrium thermodynamic formalism
for the derivation of the balance equations for each phase.
This is achieved by employing the constraints imposed by
the entropy inequality law in order to derive constitutive
relations for the irreversible phenomena that take place,
such as, viscosity, heat transfer, phase interactions, etc.

In this paper, we introduce a two-phase flow model for
sediment transport derived from the continuum theory
for fluid–saturated granular flows of Papalexandris [7].
This theory constitutes a generalization of the theory
of irreversible processes; see, for example, Lebon et al.
[8], to open and interacting subsystems with microstruc-
ture. The resulting model is valid for both compress-
ible and incompressible flows while simultaneously tak-
ing into account the stresses that are developed in the
granular medium due to its miscrostructure and the dis-
tribution of grains in space. The incompressible limit of
this model has been formally derived by Varsakelis and
Papalexandris in [9], upon generalization of low-Mach
number asymptotics to multi-phase flows.

Following the presentation of the two-phase flow
model, we shift our attention to its numerical integra-
tion and we delineate an algorithm for two-phase con-
tinua, that has been recently proposed by Varsakelis and
Papalexandris [10]. This algorithm belongs to the class
of projection-type methods, suitably extended to two ve-
locity – two pressure models. One important aspect of
this algorithm is its capacity to treat strong material in-
terfaces associated with steep gradients of particle con-
centration. Finally, we assess the predictive capacity of
the model of interest via numerically investigating the
evolution of a subaqueous erodible bed in inclined con-
figurations.
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2 The Two-Phase Flow Model for
Sediment Transport

We consider an isotropic granular material, saturated by
a simple fluid, that occupies a domain Ω. Further, we
assume that both phases have constant density. Then,
according to Varsakelis and Papalexandris [9], the gov-
erning equations of the mixture read, in non-dimensional
form,

Mass and momentum balance equations for the granular
phase,

∇ · us = 0 , (1)

ρsφs

dus

dst
+∇(φsps) =

1

Re
∇ · (µsφs V v

s )

− ∇ · (Γs∇φs ⊗ ∇φs)

+ pf ∇φs + δ (uf − us)

+ ρsφsg . (2)

Mass and momentum balance equations for the fluid
phase,

∇ · ((us − uf )φf ) = 0 , (3)

ρf φf

duf

df t
+∇(φf pf ) =

1

Re
∇ · (µf φf V v

f )

− (pf ∇φs + δ (uf − us))

+ ρf φf g . (4)

Compaction equation,

dφs

dst
= 0 . (5)

Here, the subscripts “s” and “f” denote the granu-
lar and fluid phase, respectively. Further, ρi, φi and
ui = (ui1

, ui2
, ui3

) , i = s, f are the density, volume
fraction and velocity vector of the phase i. Also, ps and
pf are the “dynamic” pressures of the granular and fluid
phase, respectively; they are completely equivalent to the
pressure term that appears in the Navier-Stokes equa-
tions. Additionally, µi is the viscosity coefficient of the
phase i and g is the gravity vector. We note that µs,
which describes the rheology of the granular material, is
not constant but depends, among others, on the particle
concentration.
The operators d

dit
= ∂

∂t
+ ui · ∇ and Vv

i stand for the
material derivative and the traceless deviatoric part of
the deformation tensor of phase i, i = s, f , respectively.
The above governing equations are closed by the satura-
tion condition,

φs + φf = 1 . (6)

The momentum exchange between the two phases is rep-
resented by the combined term pf ∇φs+ δ(uf − us), ap-
pearing in the right-hand side of the momentum equa-
tions 2 and 4, albeit with opposite sign. More specifically,
the term δ(uf −us) models the interphasial drag exerted
on the solid particles by the fluid, with δ being the inter-
phasial drag coefficient. Further, the non-conservative
product pf ∇φs models nozzling effects and its presence
is dictated by thermodynamic considerations.
The term Γs∇φs ⊗ ∇φs, whose divergence enters the

momentum equation of the granular phase, 2, is the so-
called configuration stress tensor and, accordingly, Γs is

the configuration stress coefficient. This tensor repre-
sents stresses developed from rearrangements in the dis-
tribution of the interfacial area density. Moreover, it
constitutes the non-dissipative part of the Cauchy stress
tensor of the granular material. At equilibrium, its off-
diagonal components model shear stresses that such ma-
terials support due to their micro-structure.

2.1 A Numerical Method for the
Two-Phase Flow Model

Varsakelis and Papalexandris [10] proposed an algorithm
for the integration of equations 1–5; see also the more re-
cent article of Varsakelis et al. [11]. This algorithm con-
stitutes a generalization of projection-type methods on
collocated grids to two-phase flow models and employs a
predictor–corrector scheme the integration in time. Due
to the presence of two momentum equations, a double
projection is employed; one for each velocity vector. Ac-
cordingly, a Poisson equation and a second-order elliptic
PDE with variable coefficient are solved at both the pre-
diction and the correction stages for the computation
of the pressures of the granular and fluid phase, respec-
tively. The generalized flux–interpolation method pro-
posed in Lessani and Papalexandris [12] is employed for
the integration of the convective terms to remedy the
well-known odd–even decoupling phenomenon. Addi-
tionally, stiffness problems due to steep volume–fraction
gradients in the vicinity of material interfaces are treated
via a regularization method. Schematically, the flow-
chart of the algorithm reads:

i) The values of the volume fraction, φs are computed
by integrating the compaction equation 5 via the
multi-dimensional upwind scheme of Colella [13].

ii) The algorithm searches for interfaces by checking
the magnitude of ∇φs. In the vicinity of the inter-
face, the predicted values of φs are replaced by those
of smoother, compactly supported function obtained
through a parabolic regularization.

iii) A projection method is employed for the computa-
tion of the the granular pressure ps and velocity us.
In particular, the pressure ps is computed via solv-
ing numerically a Poisson equation. Once ps has
been computed, us is calculated via the standard
Helmholtz decomposition.

iv) In our case, uf is not divergence free; see equation
3, which requires a generalization of the standard
projection method. This results in a second order
elliptic PDE with variable coefficients for the pres-
sure pf . Once pf is computed, then uf is calculated
via the Helmholtz-Marsden decomposition.

3 Numerical Results

In this section, the two-phase flow model at hand is em-
ployed to investigate the motion of an subaqueous erodi-
ble granular bed down an inclined plane. The objective
of this numerical study is twofold. First, to systemat-
ically study the properties of the flows of interest and
gain physical insight on the mechanisms that drive their
evolution. In this respect, emphasis is placed on the de-
formation of the material interface between the granular
bed and the interstitial fluid lying above it. Second, to
assess the predictive capacity of the model in hand for
the flows of interest.
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For clarity purposes, all dimensional variables are de-
noted with a hat symbol, “ˆ”.

3.1 Mixture Parameters and
Computational Set-up

We consider a mixture of water with coarse sand. The
sand is assumed to be monodisperse and its diameter d̂p

is taken equal to 1mm. The densities of water and sand
are ρ̂f = 1000 kg/m3 and ρ̂s = 2200 kg/m3, respectively.
As regards the configuration stress coefficient Γs, we

assume the following expression,

Γ̂s = k̂2ρ̂sφs . (7)

Here, k̂2 is a (strictly positive) material-dependent con-
stant and its value should be obtained experimentally.
However, systematic experimental measurements for k̂2

have yet to appear in the literature. On the other
hand, Varsakelis and Papalexandris [14] estimated nu-

merically the value of k̂2 by computing the equilibrium
distributions of granular materials and the forces act-
ing on them. On the basis of this study, we choose
k̂2 = 4× 10−5 m4/s2.
For the rheology of the granular material we opt for

the experimental correlation derived by Savage [15],

µ̂s =
µ̂′

sφs

(φc − φs)2
, (8)

where the parameter φc represents the maximum packing
of grains. Following Passman et al. [16], the value of
µ̂′

s is set equal to 723 kg/(m · s). The blow-up of 8 at

φs = φc is intended to represent the “jamming” effect
that grains experience upon attaining their maximum
packing. However, the effects of this singularity have
not been explored, either theoretically or numerically.
For this reason, we have assumed that φc = 1, so that
µs remains bounded. On the other hand, the interstitial
fluid, water, is assumed to be a simple Newtonian fluid
at constant temperature. As such, its viscosity is taken
to be constant and equal to µ̂f = 1× 10−3 kg/(m · s).

As regards the interphasial drag coefficient δ̂, the force
density exerted by the fluid on the particles is approxi-
mated by the drag on a sphere moving at constant speed
at low Reynolds numbers. This results in the following
expression for δ̂,

δ̂ = φs 18
µ̂f

d̂2
p

Q(Rep) . (9)

For the function Q(Rep), the empirical relationship pro-
posed by Rowe [17] is used,

Q(Rep) =

{

1 + 0.15 Re0.687
p , Rep < 1000 ,

0.01833 Rep, Rep ≥ 1000 ,
(10)

where Rep is the particle Reynolds number, defined with
respect to the relative grain velocity, i.e.,

Rep =
ρ̂f d̂p

µ̂f

|ûs − ûf | . (11)

In our study, all physical parameters are non-
dimensionalized as follows. The phasial densities and
pressures have been non-dimensionalized with respect to
the density of water, ρ̂ref = 1000 kg/m3, and atmo-
spheric pressure, pref = 105 Pa, respectively. Also,

the initial thickness of the granular layer, ĥ, and the

reference velocity uref =

√

ĝ ĥ have been used for the

non-dimensionalization of lengths and velocities, respec-
tively. Further, the viscosity coefficients have been non-
dimensionalized with respect to the mixture’s viscosity
µref = (ρsφs,inµs+ρf φf,inµf )/(ρsφs,in+ρf φf,in), where
φs,in stands for the initial distribution of particles. For
the problem in hand, µref ≡ 608 kg/(m · s) and, ac-
cordingly, the Reynolds number of the flow is equal to
approximately 0.2.

3.2 Subaqueous Granular Bed Inclined
at 30

o.

The unsteady, gravity-driven flow of a subaqueous erodi-
ble granular bed on a plane inclined at 30o, with the
above mixture parameters, has been studied via direct
numerical simulations in Varsakelis and Papalexandris
[18]. Herein, we confine ourselves to a brief presentation
of the the main findings and refer the reader to [18] for
additional information. For the sake of completeness, we
also discuss the computational set-up of the numerical
experiments.
The mixture is placed on the surface of a plane inclined

at an angle 30o to the streamwise direction. A Cartesian
coordinate system is employed with x1 the streamwise
and x3 the normal direction. The dimensions of the com-
putational domain are l = 20 and 4 in the streamwise and
normal directions, respectively and an equidistant mesh
of 500 × 100 cells is used for its discretization. Finally,
we set ∆t = 0.005 ∆x3.
As regards boundary conditions, the flow is assumed to

be periodic in the streamwise (x1) direction, with period
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equal to l. At the bottom of the computational domain,
which coincides with the inclined plane, the no-slip con-
dition is prescribed for the phasial velocities and zero-
Neumann conditions are prescribed for both the phasial
pressures and the volume fraction. On the other hand,
the top boundary of the computational domain is con-
siderably far from the material interface. For this rea-
son, at this boundary, the free-slip boundary condition is
applied for the phasial velocities whereas zero-Neumann
conditions are assigned to the phasial pressures and the
volume fraction.

(d)

(e)

(f)

Figure 1: Iso-contours of particle concentration φs. (a)
t = 24.5, (b) t = 30, (c) t = 37, (d) t = 43, (e) t = 49,
(f) t = 73. The material interface deforms into a series
of long waves due to the onset of the Kapitza instability.
The Kapitza waves are transformed into skewed, vortex
ripples that grow in time and also coalesce. Eventually,
the fluid velocity becomes large enough in the neighbour-
hood of the interface and the ripples are washed out

For the initial condition of the particle concentration,
we consider a dense (φs = 0.7) granular layer of con-
stant thickness h = 1, placed on the inclined plane. This
profile is superimposed to a sinusoidal perturbation of
period l and amplitude h/5, so as to trigger the erosion
of the material interface. Outside the granular bed, the
domain is filled with water. As regards the initial condi-
tions for the other variables, we assume that the entire
mixture is at rest so that the flow is induced by gravity.
Figures 1(a)–1(f) show the particle concentration at

various time instances. Our simulations show that the
evolution of the flow can be divided into three distinct
phases. The first phase, which lasts until approximately
t ≃ 36.7, is characterized by the onset of the Kapitza
instability and the deformation of the material interface

into a series of long waves. In the second phase, which
starts at t ≃ 36.7 and lasts until t ≃ 62, the Kapitza
waves transform into skewed vortex ripples. As the flow
evolves, the ripples grow and eventually coalesce. In the
third phase, which spans from t ≃ 61.2 until the termi-
nation of the simulation, the high fluid velocities wash
out these ripples and a layer of rapidly moving particles
forms at the material interface.
Let us1

denote the normalized, streamwise–averaged,
granular velocity component, in the streamwise direc-
tion. 2 shows plots of us1

, against depth x3, at differ-
ent time instances. The velocities are maximized at the
material interface. Away from it they decrease to zero,
however, no rigid body motion is observed, even close to
the inclined plane. This result is in very good agreement
with the analysis of Andreotti and Douady [19], which
asserts that, for angles of inclination a ≥ 25o, the flowing
height reaches the inclined plane.
2 additionally yields that the predicted velocity pro-

files collapse very well to a master linear curve that has
small negative curvature at the vicinity of the material
interface; this is evidence that the flow evolves in a self–
similar manner. According to previous experimental and
numerical studies on dry granular flows with large an-
gles of inclination, the profiles of us1

are approximately
linear, with positive curvature at the upper part and
negative curvature at the lower part; see, for example,
Andreotti and Douady [19]. Further, these studies show
that for a ≥ 30o, the profiles become predominantly lin-
ear. Self-similar behaviour has also been reported in the
experiments of dry granular avalanches of Bonamy et
al. [20]. Our simulations provide the first evidence that
these properties extend over to unsteady flows of fluid-
saturated granular materials as well. Finally, it is worth
noting that the aforementioned similarity between the
us1

profiles in dry and fluid-saturated granular flows has
already been confirmed experimentally for steady flows;
see Jain et al. [21], Doppler et el. [22] and others.
The examination of the vorticity field of the fluid pro-

vides important information about the nature of the ob-
served ripples. Figures 3(a)–3(c) depict iso-contours of
the magnitude of the fluid phase vorticity field at times
t = 30, 43 and 73, respectively. The shearing of the gran-
ular medium by the interstitial fluid engenders vortex
shedding from the material interface. These vortices are
skewed, with their streamwise-diameter being nearly ten
times large than the normal one, and undergo streami-
wise elongation as the flow evolves. Moreover, since the
observed vortices are located downstream each ripple’s
crest,in accordance with Bagnold’s classical terminology,
the ripples are actually vortex ripples.

4 Conclusions

In the present article, a two-phase model for sediment
transport has been presented. This model is derived from
a particular mixture theory for fluid–saturated granular
materials and comprises balance laws for both the fluid
and the granular phase plus an additional equation that
governs the evolution of the volume fraction. Further,
it properly accounts for the momentum exchanges be-
tween the two phases in a thermodynamically consistent
manner. Also, the model of interest allows for non-zero
shear stresses at zero shear rates, which constitutes an
important characteristic of granular materials.
Following the exposition of the two-phase flow model,

an algorithm for its numerical treatment has been pre-
sented. This is a predictor–corrector numerical method
that employs a double projection for the computation
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Figure 2: Granular velocity profiles us1
plotted against

depth at various times. The predicted velocities collapse
onto a master linear curve, with a slightly negative cur-
vature close to the material interface. This collapse in-
dicates that the flow evolves in a self-similar manner
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Figure 3: Iso-contours of the vorticity field of the fluid
phase at (a) t = 30.6, (b) t = 43, (c) t = 73. Vortical
structures are observed over the material interface. At
t = 43, when the ripples have been formed, lee vortices
are formed downstream the crest of each ripple

of the phasial velocities and pressures; one for each ve-
locity vector. For the numerical treatment of material
interfaces, the algorithm is combined with an interface
detection-and-treatment methodology which is based on
a local regularization scheme.
The predictive capacity of the two-phase flow model

of interest, has been assessed via direct numerical simu-
lations of a gravity–driven flow of an erodible, subaque-
ous granular bed down an inclined plane. Overall, the

numerical predictions adduce that the two-phase flow
model at hand can reproduce the important characteris-
tics of the flows of interest.
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