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From fuel efficiency to emissions targets
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The art of forecasting
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Comparing roadmaps for net-zero aviation 2050

Source: IATA, Transition pathways, April 2024
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Buechs et al. “Trends in air travel inequality

 in the UK”, 2021 

80% of CO2 from 20% of flights

New trade-offs between flying time and climate impact?

50% of UK population fly less than once a year

15% of UK population takes 70% of flights

Should demand management be driven solely by cost?

<5% of flights cause 80% of persistent contrails

How to measure (and cost) actual climate impact?

Averages do not tell the whole story
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Up to 21% fuel savings if redesigned 

to 50% range.

7% travel increase for refuelling stop.

Creemers, AIAA Aviation 2007

Gryspeerdt et al. Env Res. Letters  2024
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Net-zero needs new fuels AND new aircraft
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NASA Maxwell X-57

Electric propulsion Hydrogen propulsion

Current (EI=100) Retrofitted (EI=140) Redesigned (EI=90)

Drop-in SAF

Source: Miller,  Aviation Impact Accelerator, 2024

B747

L1011

DC-10-40A300

B767

A310

B747-400

A330

B777

B767-400ER
B777-300ER

A380

B787

B747-8

A350

B777-9

6

7

8

9

10

1960 1980 2000 2020

A
sp

ec
t 

ra
ti

o

Year of first flight NASA Boeing X-66Airbus X-Wing

AR=19AR ~13 ?

Future Boeing

Future Airbus



Imperial College London

Take off is optional – landing is mandatory 
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(Raymer, 2006)
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Flexible Aircraft 
Dynamics

Aerostructural 
optimization

Load 
alleviation

SHARPy: open-source simulator FENIAX: GPU-accelerated 
aeroelastic simulator in JAX

Gust loads on extended wing XFR1

Gust loads on extended wing XFR1

Linear/nonlinear 
optimal control

SU2: coupled adjoint + 
harmonic balance FSI solver

Control design and evaluation with model-in-the-loop

Control design and evaluation 
with model-in-the-loop 

Simultaneous shape and topology optimization

Simultaneous shape and topology optimization

Palacios and Cesnik, Dynamics of Flexible Aircraft, Cambridge University Press, 2023© SZTAKI

Those long wings will find increasingly adverse winds

Coupled aeroelastic and flight dynamics

Coupled aeroelastic and flight dynamics

© U. Michigan

https://www.imperial.ac.uk/aeroelastics/sharpy
https://dx.doi.org/10.2514/6.2024-0613
https://doi.org/10.2514/1.C036740
https://su2code.github.io/
https://dx.doi.org/10.2514/6.2024-0614
https://dx.doi.org/10.1007/s00158-022-03234-9
http://dx.doi.org/10.1016/j.jfluidstructs.2020.102981
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Example 1: Solar-powered aircraft at low altitude
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Deskos Y., del Carre A., Palacios R., “Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft 
Aeroelasticity.” Journal of Fluids and Structures 95, May 2020 

© Airbus

Very light construction for extreme performance at high altitude

Highly susceptible to low-altitude conditions

Lack of regulations (or experience!)

Step 1: Models of the 

Atmospheric Boundary Layer

Step 2: Multiple aeroelastic simulations to 

achieve statistical relevance
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Example 1: Results
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Load diagrams (wing root bending vs. torsional moments)

Deskos Y., del Carre A., Palacios R., “Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft 
Aeroelasticity.” Journal of Fluids and Structures 95, May 2020 
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Example 2: Designing load alleviation systems

     Active or passive
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FLEXOP (EU Project)
Control surface layout

© University of Michigan
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Example 2:  Closed-Loop Gust Load Alleviation on FLEXOP aircraft
Nonlinear simulations in SHARPy with 

Load alleviation and wing stabilization for 
all gust lengths.

𝜔𝑧(x)
Τmax(𝑤𝑧) 𝑈∞ = 10 %

Sensors: ሷ𝑧 at wingtip and IMU at CoG

Nonlinear model

Linear model
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Duessler, AIAA Scitech 2024
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Some take away messages

Net-zero aviation needs a multi-pronged approach

Atmospheric turbulence will only get worse 

… and aircraft will have higher aspect-ratio

We need 

 *better forecasting of wind conditions

 *integrated models of aircraft & environment

 *smart wings that adapt to wind conditions
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