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From fuel efficiency to emissions targets
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The art of forecasting
Comparing roadmaps for net-zero aviation 2050
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Averages do not tell the whole story

80% of CO, from 20% of flights

New trade-offs between flying time and climate impact?

50% of UK population fly less than once a year

Rrobability of non-participatio

(a) Binary equation
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Up to 21% fuel savings if redesigned
to 50% range.
7% travel increase for refuelling stop.

Creemers, AIAA Aviation 2007

Buechs et al. “Trends in air travel inequalit)
in the UK”, 2021

Gryspeerdt et al. Env Res. Letters 2024



Net-zero needs new fuels AND new aircraft

@ Future Boeing
Electric propulsion Hydrogen propulsion

@ Future Airbus _
Current (EI=100) Retrofitted (EI=140) Redesigned (EI=90)

Source: Miller, Aviation Impact Accelerator, 2024
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Take off is optional - landing is mandatory

Yaw maneuver and

| Aileron lateral gust
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Those long wings will find increasingly adverse winds

FENIAX: GPU-accelerated :
aeroelastic simulator in JAX
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SHARPYy: open-source simulator
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Control design and evaluation

_ : Simultaneous shape and topology optimization
with model-in-the-loop

© SZTAKI

Palacios and Cesnik, Dynamics of Flexible Aircraft, Cambridge University Press, 2023
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Example 1: Solar-powered aircraft at low altitude

Very light construction for extreme performance at high altitude
Highly susceptible to low-altitude conditions
Lack of regulations (or experience!)

Step 1: Models of the Step 2: Multiple aeroelastic simulations to
Atmospheric Boundary Layer achieve statistical relevance

© Airbus

Deskos Y., del Carre A., Palacios R., “Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft
Aeroelasticity.” Journal of Fluids and Structures 95, May 2020
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Example 1: Results

Load diagrams (wing root bending vs. torsional moments)
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Deskos Y., del Carre A, Palacios R., “Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft
Aeroelasticity.” Journal of Fluids and Structures 95, May 2020
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Example 2: Designing load alleviation systems

Active or passive
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FLEXOP (EU Project)
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Example 2: Closed-Loop Gust Load Alleviation on FLEXOP aircraft

Nonlinear simulations in SHARPy with MATLAB 4
SSIMULINK max(w,)/Us = 10 %

w,(x) \

Sensors: Z at wingtip and IMU at CoG

Load alleviation and wing stabilization for

all gust lengths.
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Some take away messages

Net-zero aviation needs a multi-pronged approach

Atmospheric turbulence will only get worse

... and aircraft will have higher aspect-ratio

We need
*better forecasting of wind conditions
*integrated models of aircraft & environment
*smart wings that adapt to wind conditions

Imperial College London 14
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