IMPERIAL

Turbulence in the path of sustainable aircraft

Imperial College London

Brahmal Vasudevan Institute
for Sustainable Aviation

> **DISCOVERY** SKILLS TRANSLATION¹ SYSTEMS-LEVEL THINKING TOWARDS NET-ZERO AVIATION Workshops **Syllabus** Core review program Seminars Doctoral Activity Policy enabler program engage

From fuel efficiency to emissions targets

Source: Bergero (2023), Nature Sust.

2010

2020

2030

2000

year

Source: ATAG, 2022

1.4

1980

1990

The art of forecasting

Comparing roadmaps for net-zero aviation 2050

Averages do not tell the whole story

80% of CO₂ from 20% of flights

New trade-offs between flying time and climate impact?

Up to 21% fuel savings if redesigned to 50% range.

7% travel increase for refuelling stop.

Creemers, AIAA Aviation 2007

50% of UK population fly less than once a year 15% of UK population takes 70% of flights

Should demand management be driven solely by cost?

(a) Binary equation
Probability of non-participation
Income decile 2
Income decile 3
Income decile 4
Income decile 5
Income decile 6
Income decile 7
Income decile 8
Income decile 9
Income decile 9
Income decile 10
Household size
Children present in household
Mobility difficulties
Greater London

Buechs et al. "Trends in air travel inequality in the UK", 2021

<5% of flights cause 80% of persistent contrails

How to measure (and cost) actual climate impact?

Gryspeerdt et al. Env Res. Letters 2024

Net-zero needs new fuels AND new aircraft

Electric propulsion

Source: Miller, Aviation Impact Accelerator, 2024

Drop-in SAF

NASA Boeing X-66

Imperial College London

Airbus X-Wing

Take off is optional - landing is mandatory

(Raymer, 2006)

Those long wings will find increasingly adverse winds

Example 1: Solar-powered aircraft at low altitude

© Airbus

Very light construction for extreme performance at high altitude Highly susceptible to low-altitude conditions Lack of regulations (or experience!)

Step 1: Models of the Atmospheric Boundary Layer

Step 2: Multiple aeroelastic simulations to achieve statistical relevance

Example 1: Results

Load diagrams (wing root bending vs. torsional moments)

Deskos Y., del Carre A., Palacios R., "Assessment of Low-Altitude Atmospheric Turbulence Models for Aircraft Aeroelasticity." *Journal of Fluids and Structures* 95, May 2020

Example 2: Designing load alleviation systems

Control surface layout

Example 2: Closed-Loop Gust Load Alleviation on FLEXOP aircraft

Nonlinear simulations in SHARPy with MATLAB SIMULINK

Sensors: \ddot{z} at wingtip and IMU at CoG

Load alleviation and wing stabilization for all gust lengths.

Nonlinear model

Imperial College London

Some take away messages

Net-zero aviation needs a multi-pronged approach

Atmospheric turbulence will only get worse

... and aircraft will have higher aspect-ratio

We need

*better forecasting of wind conditions

*integrated models of aircraft & environment

*smart wings that adapt to wind conditions

Imperial College London 14

IMPERIAL

Turbulence in the path of sustainable aircraft

Rafael Palacios 10.10.2024

IMPERIAL