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Figures: (1) https://blogs.allizhealth.com/cardiovascular-disease/, (2) https://www.heartpatientalliance.ca/general-information/types-of-cardiovascular-disease/, (3) https://www.cdc.gov/stroke/about, (4) https://medlineplus.gov/ency/article/000162.htm   
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CLINICAL EFFECTS OF TURBULENCE

Immediate Effect Long-Term Effect
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Figure: Ferguson G.G. et al. (1970). Turbulence in human intracranial saccular aneurysms. J Neurosurg. 

Mechanical Loads

Abnormally high and fluctuating shear stresses 

acting on the fluid and arterial wall

Energy Loss

Heart must work harder to overcome additional 

energy losses

• Haemolysis (red blood cell rupture)

• Progressive arterial wall disease – e.g., 

atherosclerosis, dilation, rupture

Left ventricular hypertrophy – reduced pumping 

efficiency

o Blood flow can transition to turbulence and relaminarize within a single cardiac cycle

o Due to computational complexity, blood flow is often assumed laminar, neglecting turbulence effects

o Turbulence-related haemodynamics are correlated with disease progression – but not fully understood
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METHODS TO EVALUATE TURBULENCE
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Figures (Left-to-right): (1) Manchester, E.L., et al. (2024). Computers in Biology and Medicine. (2) Dyverfeldt, P. et al. (2008). Journal of Magnetic Resonance Imaging. (3) Puiseux, T. et al. (2019). NMR in Biomedicine

CFD

e.g., RANS, LES, DNS

In vivo experiment

e.g., MRI or CT scan of patient

In vitro experiment

e.g., flow phantom
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MODELLING TURBULENCE IN AORTIC VALVE DISEASE

PATIENT-SPECIFIC SIMULATIONS
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Anatomy and Disease Surgical Valve Treatments

Figures adapted from 1. https://ufhealth.org/uf-health-aortic-disease-center/aorta-anatomy  
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Aortic valve neocuspidisation (AV-Neo)

AORTIC VALVE DISEASE
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AORTIC VALVE DISEASE

                                            

 
 
   
 
  
  

   
 
 
 

                          

 
 
 

                                     

Motivation

o Few studies which consider turbulence effects in aortic valve replacements and none in patient-specific settings.

o Haemodynamics in AV-Neo have not yet been evaluated, let alone compared with other valve types.

Objective

o Perform large-eddy simulations of real patient aortas having undergone valve surgery with bioprosthetic valve 

types and AV-Neo repair to evaluate valve-performance related haemodynamics.
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GEOMETRY RECONSTRUCTION
MAGNETIC RESONANCE IMAGING (MRI)
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Raw MR Images Segmentation 

Inlet

Outlet

Outlets

CFD Geometric Model
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4D FLOW MRI
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Velocity field reconstruction

MR Images

Registration
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BOUNDARY CONDITIONS
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Inlet

Pulsatile, velocity contours extracted from 4D flow MRI

Outlets

3-element Windkessel 

model:
Based on blood pressure, inlet 

flowrate and flow split to 

branches 
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BV-1 BV-2 AV-Neo-1 AV-Neo-2

Inlet velocity contours

STUDY COHORT
BIOPROSTHETIC VALVES (BV) & AORTIC VALVE NEOCUSPIDIZATION (AV-NEO)

Dilated

> 40 mmDilated

> 40 mm
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 Large-eddy simulation with WALE subgrid-scale model (𝐶𝑊 = 0.325) in OpenFOAM

 Structured meshes: 4.5 – 7.0 million cells

▪ Time-step: 0.2 ms 

▪ Blood flow incompressible and Newtonian
𝜌=1060 𝑘𝑔/𝑚^3 and 𝜇=0.0035 𝑃𝑎 𝑠

▪ Simulations performed on Cirrus: 216 – 252 cores, 7 – 14 days sim time

NUMERICAL DETAILS
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VELOCITY STREAMLINES

 Valvular flow entering the aorta should 

be central and streamlines should align 

with curvature of the ascending aorta.

 Valvular flow is skewed in both 

biological valves.

Manchester, E.L., et al. (2024). Computers in Biology and Medicine. 
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TURBULENCE KINETIC ENERGY
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Biological ValvesAV-Neo

Manchester, E.L., et al. (2024). Computers in Biology and Medicine. 
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KINETIC ENERGIES OVER A CYCLE
BV-1

Manchester, E.L., et al. (2024). Computers in Biology and Medicine. 
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SUMMARY

 Turbulence production depends on valvular skew, eccentricity, dilation and arch-descending aorta 

connection.

 Turbulence most sensitive to valve placement rather than valve type.

 Aortic valve treatments should prioritise minimising valvular eccentricity and skew in order to 

mitigate turbulence generation.

 Small sample size – larger scale study needed for statistically meaningful results.

 Methods for modelling/measuring turbulence in cardiovascular flows on a large scale are under-

researched.
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