Joint ERCOFTAC/EU-CTFF European Drag Reduction and Flow Control Meeting – EDRFCM 2022

Tuesday 6th September

	Welcome	10:40-10:50		
	Session 1.1	10:50-12:30		
Passive control	Pierre Ricco		NOTES ON THE SKIN-FRICTION COEFFICIENT OF BOUNDARY LAYERS AND CONFINED FLOWS	1
Passive control	Olaf van Campenhout		EXPERIMENTAL AND NUMERICAL INVESTIGATION INTO THE DRAG PERFORMANCE OF DIMPLED SURFACES IN A TURBULENT BOUNDARY LAYER	2
Passive control	Benedetto N	/lele	DRAG REDUCTION MODELING FOR ENGINEERING APPLICATIONS	3
Passive control	Saskia Pasch		MEASUREMENTS IN A TURBULENT CHANNEL FLOW BY MEANS OF AN LDV PROFILE SENSOR	4
Passive control	Mahmud N	luhammad	EFFECT OF SLAT ATTACHMENT ON RUDDER LEADING EDGE OF A VERTICAL TAIL PLANE	6
	Lunch	12:30-14:00		
	Session 1.2	14:00-16:00		
Passive control	Federica G	Sattere	FLOW OVER RIBLETS: ANALYTICAL CORRECTION OF CORNER SINGULARITY	7
Passive control	Jeremy Wong		ASSESSING THE PROTRUSION-HEIGHT CONCEPT FOR PREDICTING THE DRAG-REDUCTION PERFORMANCE OF RIBLETS	8
Passive control	Jooha Kim		BIOMIMETIC FLOW CONTROL FOR A PARAGLIDER: FROM IDEA TO PRODUCT	9
Passive control	Zhihao Zhang Fermin Mallor Firoozeh Foroozan		EXPERIMENTAL INVESTIGATION OF THE SESSILE DROPLET EVAPORATION PROCESS BASED ON DIFFERENT SURFACE ROUGHNESS AND WETTABILITY	10
Passive control			CANCELLATION OF THE INVISCID CONTRIBUTION IN SKIN-FRICTION DECOMPOSITIONS	11
Passive control			SYNCHRONIZED MEASUREMENTS OF FLOW AND WALL FIELDS IN TURBULENT BOUNDARY LAYERS	12
	Tea break	16:00-16:30		
	Session 1.3	16:30-18:30		
EU-CTFF	Kwing-So C	Choi	PLASMA FLOW CONTROL OF THE TIP VORTICES OVER A VERY LOW ASPECT-RATIO WING	13
EU-CTFF	Francois Rogier		ELECTROHYDRODYNAMIC FORCE MODELLING AND APPLICATION TO FLOW CONTROL	14
EU-CTFF	Li He		TWO-SCALE COUPLING FOR WALL-BOUNDED TURBULENCE OVER 'REGULAR ROUGHNESS'	15
EU-CTFF	Arivazhagan Balasubramanian		PREDICTION OF WALL-BOUNDED TURBULENCE IN A VISCOELASTIC CHANNEL FLOW USING CONVOLUTIONAL NEURAL NETWORKS	16
EU-CTFF	Yaxing Wang		OPPOSITION CONTROL OF TURBULENT SPOTS	17
EU-CTFF	Amrit K	Kumar	SPREADING DYNAMICS OF A WATER DROP ON A MICRO- TEXTURED SURFACE	18

Reception 18:30-20:00

Wednesday 7th September

	36551011 2.1 0.40-10.20		
Wall forcing	Maurizio Quadrio	DRAG REDUCTION ON A TRANSONIC WING	19
Wall forcing	Emanuele Gallorini	COHERENT NEAR-WALL STRUCTURES AND DRAG REDUCTION BY SPANWISE FORCING	20
Wall forcing	Esther Mateling	INTERNAL FLOW STRUCTURE MODIFICATION GENERATED BY TRANSVERSAL SURFACE WAVES	21
Wall forcing	Amandine Capogna	NEAR-WALL MHD TURBULENCE CONTROL - EFFECT OF A HALBACH MAGNET CONFIGURATION	22
Wall forcing	Isabella Fumarola	SIMULTANEOUS MEASUREMENTS OF SURFACE AND FLUID VELOCITY IN A TURBULENT BOUNDARY LAYER WITH STANDING SPANWISE WAVES AT THE WALL	23

	Coffee break	10:20-10:50		
	Session 2.2	10:50-12:30		
Wall forcing	Dileep Chandran		TURBULENT DRAG REDUCTION BY SPANWISE WALL FORCING AT HIGH REYNOLDS NUMBERS	
Wall forcing	Rahul D	Deshpande	TOWARDS ENERGY-EFFICIENT TURBULENT DRAG REDUCTION THROUGH ENHANCING THE INTER-SCALE COUPLING	
Wall forcing	Alessandro C	Chiarini	TURBULENT DRAG REDUCTION USING SPANWISE FORCING IN COMPRESSIBLE REGIME	
Wall forcing	Paolo C	Divucci	MULTI-FIDELITY SURROGATE MODELLING OF THE NET POWER SAVINGS OF AN ACTUATED TURBULENT BOUNDARY-LAYER	Ī
Wall forcing	Mohammad L	Jmair	REYNOLDS STRESSES TRANSPORT IN A TURBULENT CHANNEL FLOW CONTROLLED USING STREAMWISE TRAVELLING WAVES	
	Lunch	12:30-14:00		-
	Session 2.3	14:00-16:00		
Plasma control	Nicholas E	Benard	RING-TYPE DBD PLASMA ACTUATOR AT MILLIMETRIC SCALE	T
Plasma control	Kaisheng F	Peng	EXPERIMENTAL BASE FLOW MODIFICATION THROUGH PLASMA ACTUATION ON A SWEPT WING	I
Plasma control	Patricia S	Sujar-Garrido	PLASMA VORTEX GENERATORS USED FOR SEPARATION CONTROL AND DRAG REDUCTION ON A BLUFF BODY	
Plasma control	Sergei L	eonov	SHOCK WAVE REFLECTION CONTROL IN M=4 FLOW BY FILAMENTARY ELECTRICAL DISCHARGE	I
Plasma control	Giulia Z	Coppini	CONTROL OF STATIONARY CROSSFLOW INSTABILITIES THROUGH DESTRUCTIVE INTERFERENCE	
Plasma control	Jacopo S	Serpieri	WALL-TURBULENCE CONDITIONING WITH STEADY CROSSFLOW- DIRECTED PLASMA JETS	I
	Tea break	16:00-16:30		-
	Session 2.4	16:30-18:30		
Flow instabilities	Dongdong X	Κu	WALL COOLING AND HEATING EFFECTS ON THE EXCITATION OF GÅNORTLER VORTICES IN COMPRESSIBLE BOUNDARY LAYERS	
Flow instabilities	Jordi C	Casacuberta	THE REVERSE LIFT-UP EFFECT IN CROSSFLOW INSTABILITIES OVER SURFACE IRREGULARITIES	
Flow instabilities	Andras Szabo		STABILITY ANALYSIS OF MINIATURE VORTEX GENERATORS	ľ
Flow instabilities	Anna Spasova		DEVELOPMENT OF AN ALGORITHM FOR CREATING A DEVICE THAT FORMS THE SUBMERGED JET WITH REQUIRED INSTABILITY CHARACTERISTICS	Î
Flow instabilities	Peter Nagy		THE DELAY OF NATURAL LAMINAR-TURBULENT TRANSITION USING ELASTIC COATING AND MINIATURE VORTEX GENERATORS	t
Flow instabilities	Gareev L	inar	EXPERIMENTAL DETECTION OF NON-MODAL PERTURBATION GROWTH MECHANISM IN A LAMINAR JET	I
				1

Session 2.1 8:40-10:20

Thursday 8th September

Session 3.1 8:40-10:20

Blowing & suction	Iraj Mortazavi		MODAL ANALYSIS AND FLOW CONTROL ON A REDUCED SCALE SUV	41
Blowing & suction	Jonathan M	lorrison	SUPPRESSING THE PRESSURE DRAG OF A TURBULENT BLUFF BODY WAKE WITH PULSED JET FORCING	42
Blowing & suction	Hung Ti	ruong	AERODYNAMIC DRAG REDUCTION OF A TILT ROTOR AIRCRAFT USING ZERO-NET-MASS-FLUX DEVICES	43
Blowing & suction	Xiaodong C	hen	DRAG REDUCTION PERFORMANCE OF SWEEPING JETS ON A SLANTED-BASED CYLINDER	44
Blowing & suction	Giulio Rota		ON-OFF PUMPING FOR DRAG REDUCTION IN A TURBULENT CHANNEL FLOW	45
	Coffee break	10:20-10:50		
	Session 3.2	10:50-12:30		
Blowing & suction	Davide G	atti	GLOBAL MOMENTUM BUDGET FOR TURBULENT FLOW CONTROL VIA MICROBLOWING	46
Blowing & suction	Babak Mohammadikalakoo		EFFECT OF THE REAR LINKING TUNNELS AND BLOWING ACTIVE FLOW CONTROL ON AERODYNAMIC PERFORMANCE OF BLUFF BODY	47
Blowing & suction	Mike Diessner		ON THE DEVELOPMENT OF A BAYESIAN OPTIMISATION FRAMEWORK FOR TURBULENT DRAG REDUCTION	48
Blowing & suction	Joseph O'Connor		FLOW PHYSICS OF A TURBULENT BOUNDARY LAYER ACTUATED VIA WALL-NORMAL BLOWING IN DIFFERENT CONFIGURATIONS	49
Blowing & suction	Annika Frede		NUMERICAL INVESTIGATION OF HOMOGENEOUS BLOWING AND SUCTION ON AN AIRFOIL IN COMPRESSIBLE FLOW	50
	Lunch	12:30-14:00		
	Session 3.3	14:00-16:00		
Liquid drag reduction	Keizo W	/atanabe	DRAG REDUCTION OF AQUEOUS SUSPENSIONS OF FINE SOLID MATTER IN PIPE FLOWS	51
Liquid drag reduction	Keizo Watanabe		HEAT TRANSFER IMPROVEMENT AND DRAG REDUCTION OF GRAPHENE OXIDE SUSPENSIONS	52
Liquid drag reduction	Ricardo Garcia-Mayoral		CAPTURING THE EFFECT OF SLIP/NO-SLIP SUPERHYDROPHOBIC TEXTURES IN TEXTURE-LESS SIMULATIONS	53
Liquid drag reduction	Michiel van Nesselrooij		DEVELOPMENT OF AN APPARATUS FOR FLAT PLATE DRAG MEASUREMENTS AND ITS APPLICATION FOR COMPLIANT COATINGS IN TURBULENT BOUNDARY LAYERS	54
Liquid drag reduction	Tao Liu		ON THE DETECTION AND CHARACTERISATION OF HIBERNATING TURBULENCE IN BOUNDARY-LAYER FLOWS	55
Liquid drag reduction	Dries vann Nimwegen		THE CHARACTERIZATION OF DRAG REDUCING AGENTS FOR APPLICATION IN LOW-ENTHALPY GEOTHERMAL WELLS AND DISTRICT HEATING SYSTEMS	56

 Museum
 16:00-18:00

 Banquet
 19:45

Friday 9th September

	Session 4.1	9:00-10:20		
Machine learning	chine learning Fermin Mallor		CONTROL OF UNSTEADY WAKE FLOWS BY MACHINE LEARNING	57
Machine learning			BAYESIAN OPTIMIZATION OF ACTIVE FLOW CONTROL IN THE TURBULENT BOUNDARY LAYER ON A NACA4412 PROFILE	58
Machine learning			MEASURING THE UNSTEADY DRAG OF SUPERHYDROPHOBIC SURFACE TREATMENT USING NEURAL NETWORKS AND EXPERIMENTAL DISPLACEMENT TIME SERIES	59
Machine learning	Remy I	Hosseinkhan	EXPLORATION STRATEGIES FOR CONTROL OF CHAOTIC DYNAMICAL SYSTEMS USING REINFORCEMENT LEARNING	60
	Coffee break	10:20-10:50		
	Session 4.2	10:50-12:30		
Machine learning	Chenwei Xia		FLOW CONTROL FOR BLUFF BODY DRAG REDUCTION USING REINFORCEMENT LEARNING WITH PARTIAL MEASUREMENTS	61
Machine learning	Anna Guseva		LARGE-SCALE OPPOSITION FLOW CONTROL OF THE LOGARITHMIC LAYER	62
Machine learning	Enrico Amico		DEEP REINFORCEMENT LEARNING FOR BLUFF BODY WAKE CONTROL	63
Machine learning	Fabio Pino		MACHINE LEARNING CONTROL OF 2D FALLING LIQUID FILM	64
Machine learning	Anand Sudhi		DESIGN EXPLORATION OF LOW DRAG NLF AND HLFC WINGS	65
	Session 4.3	14:00-15:40		
Porous surface	Alfredo F	Pinelli	ON THE EFFECTS OF FILAMENTS INCLINATION ON CANOPY FLOWS	66
Porous surface	Essameldin Abdo		TURBULENCE OVER ANISOTROPIC POROUS SUBSTRATES: A HOMOGENIZATION-BASED STUDY	67
Porous surface	F.H. Hartog		TURBULENT BOUNDARY LAYERS OVER SURFACES WITH STREAMWISE-PREFERENTIAL PERMEABILITY	68
Porous surface	Mahiro Morimoto		DISCUSSION ON THE POSSIBILITY OF TURBULENT DRAG REDUCTION BY A STREAMWISE PREFERENTIAL POROUS MEDIUM	69
Porous surface	Ludovico Fossa		SUPERSONIC PRE-TRANSITIONAL STREAKS OVER POROUS SURFACES	70
	Farewell	15:40-16:00		
	Tea break	16:00-16:30		

Tea break 16:00-16:30