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Hydrogen: an ambivalent energy vector

Possible hazardous events following a leakagel').
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Towards reliable predictions of explosions

Phenomenological
models

Shadowgraph image of a lean hydrogen-air flame assumed wrinkled flame i~
,/" < Y

propagating in an obstructed channel, Schematic of a flame-surface-based ol

air deflagration®
phenomenological model for explosions!?. LES of a propane-air deflagration®.
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n Vi-ug >0
Stretch = rate of change in local flame surface areall V/ \0 N
- <

[1] Karlovitz et al., Symp. (Int.) Combust., 1953 [3] Clavin & Joulin, J. Phys. Lett., 1983
EEEEEHN [2] Bush & Fendell, Combust. Sci. Tech., 1970 [4] Giannakopoulos et al., Combust. Flame, 2019
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Lean H,-air flames

Leeg < 1= L < 0= S, > S5 for K> 0
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2D spherical flame set-up

Geometry, boundary and initial conditions:

Chemistry: simple mechanism reproducing
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LES of the spherical flame using the classical TF model

* Resolution decreased from DNS to LES-like
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* Progressive loss of flame wrinkling when
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S2. Subgrid model (efficiency)

“Total = > 5-TF model
@Qesolved stretch effects]
+

Pure TD instability effects|”

— taken from experimental correlations, verified in
DNS in a wide range of conditions

Hypothesis: no TD structure is resolved in the LES
and all TD instability effects are modelled
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The ENACCEF2 explosion

Photo of ENACCEF2 test rigl!.

Geometry, boundary and initial conditions:

All walls: law of the wall, isothermal

— -

* L,,,=7.6m, D, =0.23m,d, =0.14m

tube tube
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Conclusions

* Premixed lean Hy-air flames are subject to several phenomena yet ill-accounted/
unaccounted for in the standard LES approach;

* A state of the art has identified two main shortcomings:

4 )
P1. The classical TF model artificially accelerates the flame
by amplifying its response to stretch

P2. The classical TF model artificially decelerates the flame
\by dampening T'D structures

J

e The resulting mesh dependency questions the predictability of the standard approach
and calls for new models;
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* A correction strategy has been designed to produce reliable LES of lean Hsy-air

explosions;

S1. Stretched-Thickened Flame modelll-?
S1.4+52. Thermo-Diffusive-Stretched-Thickened Flame modell’

e The correction model is able to consistently capture the right flame propagation

n:
Free-atmosphere explosions (spherical flames, both 2D and 3D — not shown here —);

Confined explosions (e.g. tube flames — not shown here —);

Industrial-like confined and obstructed explosions.
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