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2D spherical flame set-up

Geometry, boundary and initial conditions:

Chemistry: simple mechanism reproducing
• Laminar flame properties
• Flame response to stretch

Operating conditions: ambient         , lean mixture
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Flame propagation:

• Two deficiencies due to 
thickening/mesh coarsening:
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Flame propagation:

• Two deficiencies due to 
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P1. Stronger response to stretch;
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Flame propagation:

• Two deficiencies due to 
thickening/mesh coarsening:
P1. Stronger response to stretch;
P2. Delayed TD onset, loss of 
wrinkling in the TD phase.

• P1 and P2 intensify with thickening
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Flame propagation:
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Flame propagation:
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Flame propagation:
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P1. The classical TF model artificially accelerates 
the flame by amplifying its response to stretch
P2. The classical TF model artificially decelerates 
the flame by dampening TD structures
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Development of a correction: solution for P1

S1. Stretched-Thickened Flame (S-TF) model[1-2]

• Extension of the classical TF model, using:

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion
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Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion



|99

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion

DNS TF S-TF

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame



|100

Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

DNS TF S-TF

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame



|101

Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

ü The S-TF model effectively solves the 
amplification of stretch effects by 
thickening factor;

DNS TF S-TF

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame



|102

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

ü The S-TF model effectively solves the 
amplification of stretch effects by 
thickening factor;

DNS TF S-TF

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

P1. The classical TF model artificially accelerates 
the flame by amplifying its response to stretch
P2. The classical TF model artificially decelerates 
the flame by dampening TD structures



|103

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

Application of the correction S1: the S-TF model[1]

• First test for δ0L/∆x = 3.5, F = 2

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., Int. J. Hydrogen Energ., 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., Combust. Flame, 2023

Introduction Problem analysis Proposed solution Application Conclusion

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.0

1.2

1.4

1.6

1.8

2.0

v f
[m

/s
]

ü The S-TF model effectively solves the 
amplification of stretch effects by 
thickening factor;

DNS TF S-TF

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

P1. The classical TF model artificially accelerates 
the flame by amplifying its response to stretch
P2. The classical TF model artificially decelerates 
the flame by dampening TD structures



|104

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

Introduction Problem analysis Proposed solution Application Conclusion



|105

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)

Introduction Problem analysis Proposed solution Application Conclusion



|106

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)

Introduction Problem analysis Proposed solution Application Conclusion



|107

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)
“Total =

Resolved stretch effects
+

 Pure TD instability effects ”

Introduction Problem analysis Proposed solution Application Conclusion



|108

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)
“Total =

Resolved stretch effects
+

 Pure TD instability effects ”
ETDS =

vf

vsmooth

f

Introduction Problem analysis Proposed solution Application Conclusion



|109

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)
“Total =

Resolved stretch effects
+

 Pure TD instability effects ”
ETDS =

vf

vsmooth

f

Pure TD 
instability 

effects

Introduction Problem analysis Proposed solution Application Conclusion



|110

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)
“Total =

Resolved stretch effects
+

 Pure TD instability effects ”
ETDS =

vf

vsmooth

f

Pure TD 
instability 

effects

Introduction Problem analysis Proposed solution Application Conclusion



|111

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)
“Total =

Resolved stretch effects
+

 Pure TD instability effects ”
ETDS =

vf

vsmooth

f

S-TF model

Pure TD 
instability 

effects

Introduction Problem analysis Proposed solution Application Conclusion



|112

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)

→ taken from experimental correlations, verified in 
DNS in a wide range of conditions

“Total =
Resolved stretch effects

+
 Pure TD instability effects ”

ETDS =

vf

vsmooth

f

S-TF model

Pure TD 
instability 

effects

Introduction Problem analysis Proposed solution Application Conclusion



|113

0.00 0.02 0.04 0.06 0.08 0.10
rf [m]

1.2

1.4

1.6

1.8

v f
[m

/s
] vf

v
smooth

f

Globally stretched phase
Smooth flame

TD-dominated phase
Unstable flame

Development of a correction: solution for P2

[1] Goulier, Thesis, 2015

S2. Subgrid model (efficiency)

→ taken from experimental correlations, verified in 
DNS in a wide range of conditions
Hypothesis: no TD structure is resolved in the LES
and all TD instability effects are modelled

“Total =
Resolved stretch effects

+
 Pure TD instability effects ”

ETDS =

vf

vsmooth

f

S-TF model

Pure TD 
instability 

effects

Introduction Problem analysis Proposed solution Application Conclusion



|114
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simulation of propagating lean hydrogen-air flames, International Journal of Hydrogen Energy, 2024
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P1. The classical TF model artificially accelerates 
the flame by amplifying its response to stretch ✓
P2. The classical TF model artificially decelerates 
the flame by losing TD structures ✓
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Geometry, boundary and initial conditions:

The ENACCEF2 explosion

[1] Grosseuvres, Thesis, 2018

• &tube = 7.65m, 'tube = 0.23m, (obs = 0.14m
Dtube

Ltube

dobs Dtube

All walls: law of the wall, isothermal

Photo of ENACCEF2 test rig[1].
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Application of the TD-S-TF model

S-TF LES (correction S1 only):
✗Flame speeds too low (no account for 

TD instability effects)

ü

ü

S-TF LES TD-S-TF LES Exp.

[1] Grosseuvres, Thesis, 2018
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Application of the TD-S-TF model

S-TF LES (correction S1 only):
✗Flame speeds too low (no account for 

TD instability effects)

TD-S-TF LES (corrections S1 and S2 )
ü

ü

S-TF LES TD-S-TF LES Exp.

[1] Grosseuvres, Thesis, 2018
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Application of the TD-S-TF model

S-TF LES (correction S1 only):
✗Flame speeds too low (no account for 

TD instability effects)

TD-S-TF LES (corrections S1 and S2 )
üCorrect reproduction of progressive

flame acceleration scenario
üRight flame speed levels

• Before the obstructed region (laminar)
• Within the obstructed region

S-TF LES TD-S-TF LES Exp.

[1] Grosseuvres, Thesis, 2018
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Application of the TD-S-TF model

TD-S-TF LES
üCorrect reproduction of progressive

flame acceleration scenario
üRight flame speed levels
üRight pressure levels à correct

prediction of the explosion damage
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[1] Grosseuvres, Thesis, 2018
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Conclusions

• Premixed lean H2-air flames are subject to several phenomena yet ill-accounted/
unaccounted for in the standard LES approach;

• A state of the art has identified two main shortcomings:

• The resulting mesh dependency questions the predictability of the standard approach
and calls for new models;

P1. The classical TF model artificially accelerates the flame 
by amplifying its response to stretch
P2. The classical TF model artificially decelerates the flame 
by dampening TD structures

Introduction Problem analysis Proposed solution Application Conclusion
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[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., A modelling strategy for the Thickened Flame 
simulation of propagating lean hydrogen-air flames, Submitted to the International Journal of Hydrogen Energy, 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., A generalization of the Thickened Flame model for stretched flames, 
Combustion and Flame, 2023
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S1. Stretched-Thickened Flame model[1-2]
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ü
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Conclusions

• A correction strategy has been designed to produce reliable LES of lean H2-air
explosions;

• The correction model is able to consistently capture the right flame propagation
in:

ü Free-atmosphere explosions (spherical flames, both 2D and 3D – not shown here –);
ü Confined explosions (e.g. tube flames – not shown here –);

ü Industrial-like confined and obstructed explosions.

[1] Hok J.-J., Dounia O., Detomaso N., Jaravel T., Douasbin Q. & Vermorel O., A modelling strategy for the Thickened Flame 
simulation of propagating lean hydrogen-air flames, Submitted to the International Journal of Hydrogen Energy, 2024
[2] Detomaso N., Hok J.-J., Dounia O., Laera D., & Poinsot T., A generalization of the Thickened Flame model for stretched flames, 
Combustion and Flame, 2023
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