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Brief summary 
Compressible single- and two-phase flows are central to many applications in aerospace, energy, 
process engineering, and biomedicine. However, numerically simulating these flows poses significant 
challenges due to complex flow phenomena such as turbulence, compressibility, combustion, and 
material interfaces. Since scale-resolving simulations of these processes will remain beyond the reach 
of available computational resources in the foreseeable future, computational fluid dynamics (CFD) 
continues to rely on suitable closure models (e.g., for turbulence) and nonlinear, solution-adaptive 
discretizations (e.g., for shock-capturing). While machine learning (ML) offers novel avenues to 
accelerate conventional numerical models and discretizations, questions arise on how to train ML 
models to ensure consistency, stability, and generalizability. This research addresses these points by 
examining constrained hybrid ML-CFD models and by developing a comprehensive differentiable CFD 
solver called JAX-Fluids. This solver facilitates the integrated training of these models, thereby 
preserving known physical laws and key numerical properties such as stability and convergence. JAX-
Fluids combines high-order numerical schemes for compressible single- and two-phase flows with 
state-of-the-art ML methods within a unified solver framework, facilitating research at the intersection 
of ML and CFD. JAX-Fluids’ automatic differentiation (AD) capabilities not only enable end-to-end 
training of machine-learned discretizations and closure models but also open up new solution strategies 
for challenging inverse problems, including active flow control or shape optimization in aerodynamics. 

Scientific summary 
Numerical simulations of shock-dominated flows require nonlinear, solution-adaptive discretizations, 
so-called shock-capturing schemes, which introduce sufficient – but not excessive – numerical 
dissipation to adequately represent discontinuities on the computational mesh. Among the most popular 
shock-capturing schemes are weighted essentially non-oscillatory (WENO) schemes, which use 
analytical smoothness measures to form convex combinations of candidate Harten-type polynomials. 
While analytical smoothness measures recover the underlying linear scheme in the asymptotic limit, 
they suffer from loss of accuracy in the pre-asymptotic regime. To address this, we substitute the 
analytical smoothness measures of a third-order WENO scheme by a shallow neural network (NN) 
surrogate [4], see Fig. A. The input stencil values are preprocessed via a so-called Delta-layer to ensure 
Galilean invariance. The network predicts the polynomial weights 𝜔!"", which are postprocessed to 
ensure the ENO-property (ENO-layer). We propose a novel loss function that dynamically balances two 
objectives – minimizing reconstruction error and minimizing the deviation of the polynomial weights 
𝜔!"" from the ideal linear weights – based on the smoothness of each training sample. The resulting 
WENO3-NN scheme is trained offline on analytical functions, including polynomials, trigonometric 
functions, and discontinuities. The overall scheme achieves maximum-order convergence in the 
asymptotic limit while outperforming conventional third-order WENO schemes at coarse resolutions. 
The combination of elements of conventional numerical methods with constrained ML surrogates 
enhances model interpretability and provides fallback mechanisms for unseen scenarios. 
While the WENO3-NN model is trained offline and remains physics-agnostic, we resort to online 
training to develop a physics-informed, data-driven discretization for nonclassical undercompressive 
shocks [5]. By online training, we refer to a training paradigm in which the trainable model is integrated 
into the CFD solver, and AD is used to propagate gradients through the entire CFD framework. Using 
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the example of a scalar hyperbolic partial differential equation (PDE) with a cubic flux, we demonstrate 
that end-to-end optimization allows shaping the truncation error of the learned data-driven discretization 
such that it is consistent with the underlying small-scale terms of the governing equations. Unlike offline 
training, the ML model in this case observers the entire dynamics of the discretized PDE. As a result, 
the model becomes physics-informed and generally extrapolates better to out-of-distribution samples 
while exhibiting enhanced long-term stability. In our experiments, the NN-based discretization was 
trained solely on Riemann problems. Notably, when tested on a smooth sinusoidal initial condition, the 
NN-based discretization was not only able to capture the dynamic formation of shock discontinuities – 
despite not having seen such scenarios during training – but also demonstrated significantly improved 
dissipation-dispersion characteristics compared to a well-controlled dissipation (WCD) scheme, see 
Fig. B. 
Building upon aforementioned work on hybrid ML-CFD methods, the central contribution of this 
research is the development of JAX-Fluids (https://github.com/tumaer/JAXFLUIDS), a fully 
differentiable CFD solver for compressible single- and two-phase flows [2,3]. JAX-Fluids is a high-
order Godunov-type finite-volume solver and supports two-phase flow simulations via two 
complementary approaches: a level-set-based sharp interface method and a five-equation diffuse 
interface method. Notably, the level-set method also serves as a conservative immersed boundary 
method, enabling flexible and accurate treatment of complex geometries. 
Most importantly, JAX-Fluids enables the seamless integration of ML modules and leverages AD to 
compute gradients of the discretized PDE throughout the entire solver. The AD capabilities are essential 
for end-to-end optimization of ML-accelerated numerical models and discretizations. Fig. C provides a 
schematic of the integrated training process: given a ground truth trajectory, a forward trajectory is 
generated using an ML model embedded within the JAX-Fluids solver. A user-defined loss function 
ℒ(𝜃) measures the discrepancy between the ground truth and the model trajectory, where 𝜃 are trainable 
parameters of the ML model. Since the entire integration loop is automatically differentiable, the 
gradient of the loss function with respect to the parameters, ∇#ℒ(𝜃), can be computed directly, and 
model parameters can be optimized using gradient-based algorithms.  
We leveraged JAX-Fluids’ end-to-end optimization capabilities to implement and train machine-learned 
implicit large eddy simulation (ML-ILES) discretizations for compressible turbulence [1]. Using 
coarse-grained direct numerical simulation data as ground truth, the ML model was embedded into the 
cell-face reconstruction process, thereby shaping the schemes’ truncation error. A key result of this work 
is that end-to-end trained discretizations can learn tailored numerical strategies for flow regions with 
strong compressibility effects and regions of high turbulent intensity. This demonstrates the potential of 
data-driven discretizations to handle complex flow phenomena. 
While Fig. C shows 3D flow fields as training targets, the loss function can be computed from any 
(potentially low-dimensional) observable of the spatio-temporal trajectory. The training workflow has 
already been successfully adapted to solve classical inverse problems in CFD, including data 
assimilation, active flow control problems, and aerodynamic shape optimization. For example, we 
optimized the model parameters 𝜃 of an airfoil geometry by minimizing its drag coefficient. The 
differentiable CFD framework removes the need for manual derivation and implementation of adjoint 
operators and opens novel avenues for tackling longstanding inverse problems in fluid mechanics. 
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JAX-Fluids is parallelized and runs efficiently on modern high-performance computing hardware, 
including GPUs and TPUs, enabling scalable training and inference for large-scale flow simulations. 
By unifying high-fidelity numerical methods with differentiable programming, JAX-Fluids establishes 
a versatile open-source platform for advancing research at the intersection of ML and CFD. It not only 
enables the training of ML-accelerated models and discretizations in a physically consistent manner but 
also provides a powerful tool for solving inverse problems – bridging data-driven modeling with first-
principles physics. 
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In addition to the publications described above, the total research output includes a paper published in 
the Journal of Computational Physics (JCP), an accepted paper at Physical Review Fluids, and a 
preprint currently under review at JCP. A summary of all publications is available on Google Scholar. 
This research has been continuously presented at national and international conferences, including 
ECCOMAS, APS DFD, and GAMM, and at several invited talks, including the Harvard Rising Stars 
in CSE event and the Computer Physics Communications Seminar Series. Under the supervision of the 
candidate, more than 10 students have employed the JAX-Fluids solver for their term papers and 
bachelor’s and master’s theses. Multiple collaborations with both national and international researchers 
have been established over the course of this doctorate, and the JAX-Fluids code base remains under 
active development. 
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