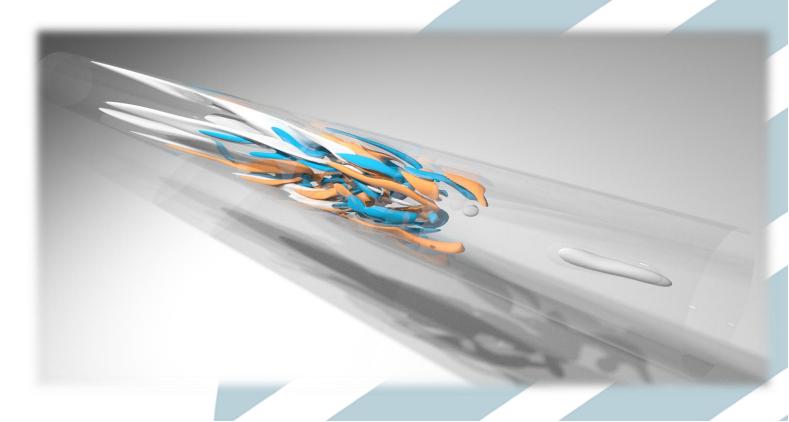


THE TRANSITIONAL REGIME OF PULSATILE PIPE FLOW

DANIEL MORÓN MONTESDEOCA ERCOFTAC Autumn Festival 2025

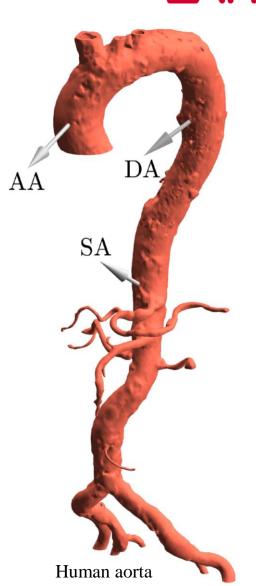


Turbulence in the cardiovascular system

The presence of irregular blood flow patterns or **turbulence** in the aorta has been linked with **cardiovascular diseases**.

Still not clear under which conditions the flow may be turbulent!

- 1. Re in the transitional regime!
- 2. Difficult to measure/model



Modelling cardiovascular flows

- 1. Unsteady driven (pulsatile)
- Complex geometry
- 3. Flexible walls
 4. Rheology
 → u_b(t)

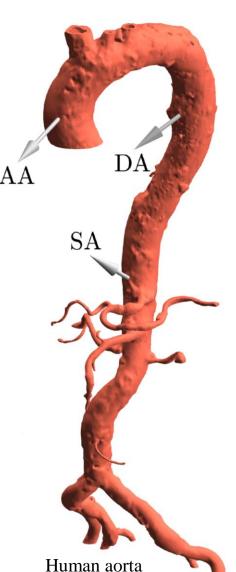
The Model:

- ✓ Cylindrical
- ✓ Rigid pipe
- ✓ Newtonian Fluid

What is the effect of pulsatile driving on

- 1. turbulence transition?
- 2. turbulence behavior?

I use DNS
Github with the open source full GPU pipe flow code!



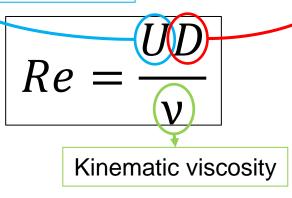
Contents

- 1) (Intro) Steady pipe flow: turbulence transition and transitional regime
- 2) (Results) Transition to turbulence in Pulsatile Pipe Flow
- 3) (Results) Transitional regime of Pulsatile Pipe Flow
- 4) Conclusions

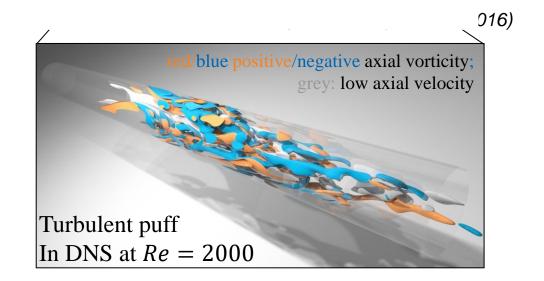
1. Flow regimes in steady pipe flow

Time-Averaged bulk velocity

Pipe diameter

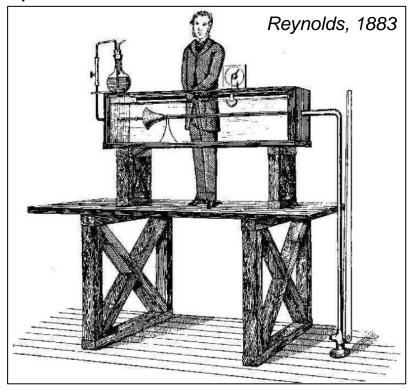


- Laminar flow: $Re \le 1800$
- For a sufficiently perturbed pipe!
- Fully **turbulent** flow: $Re \ge 3000$

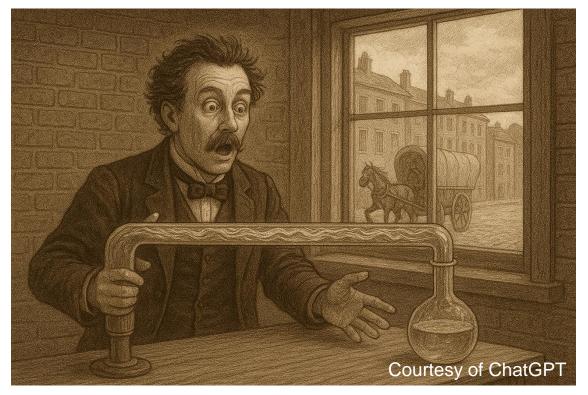


1. Transition to turbulence in steady pipe flow

By improving his experimental set-up Reynolds managed to get laminar flow up to $Re \approx 12000$

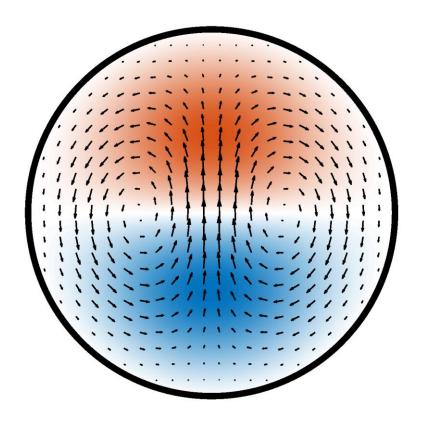


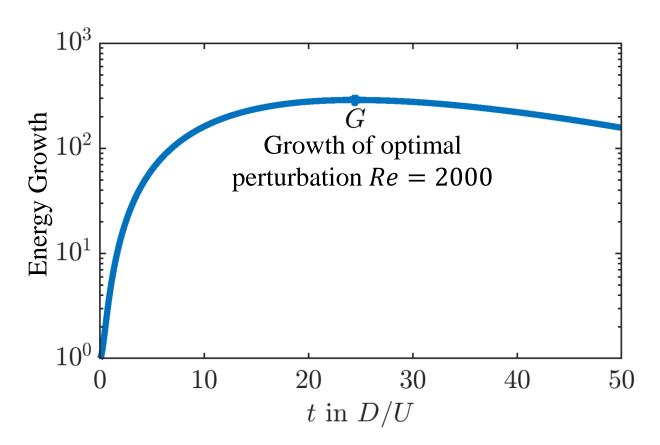
However, any **sufficiently big perturbation**, such as the vibrations caused by a wagon, could trigger turbulence at Re < 12000



1. Linear analysis

Pipe flow is linearly stable for all $Re \le 1e7$ (Meseguer 2003) Perturbations can grow (linearly) transiently! Total growth depends on its initial shape





1. Transitional regime in steady pipe flow

Puffs decay at low $Re \le 2040$, or split/elongate at Re > 2040 Re = 1850

red: turbulence indicator grey: low axial velocity

Co-moving reference frame

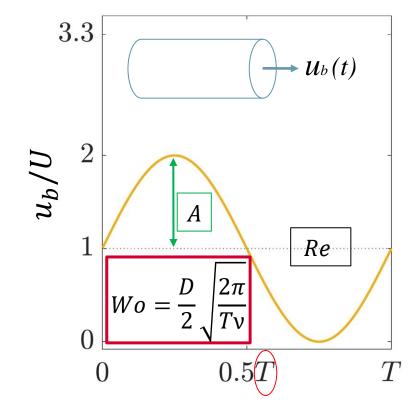
Contents

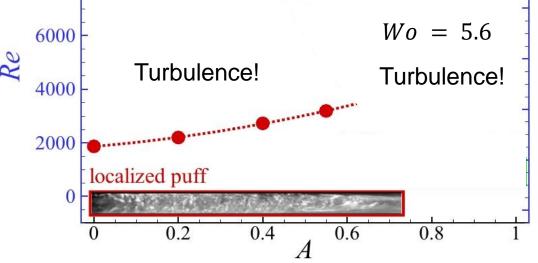
- 1) (Intro) Steady pipe flow: turbulence transition and transitional regime
- 2) (Results) Transition to turbulence in Pulsatile Pipe Flow
- 3) (Results) Transitional regime of Pulsatile Pipe Flow
- 4) Conclusions

2. Pulsatile Pipe Flow

The flow depends on three parameters: Re, Wo and waveform I only consider $1000 < Re < 3000 \mid 5 < Wo < 22 \mid 0.5 \le A < 3$ At these parameters transition occurs at low Re.

D. Xu, A. Varshney, X. Ma, B. Song, M.Riedl, M. Avila, B.Hof, PNAS 2020 Wo = 5.6





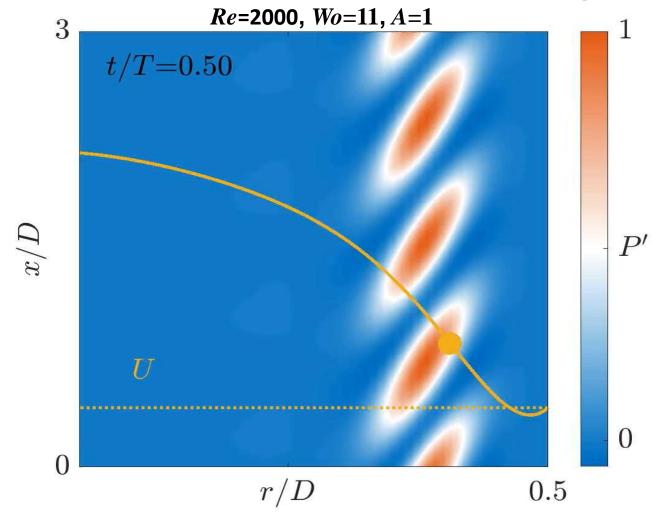
2. Transient growth of perturbations

We look for the **initial condition** that can **grow** (G) the most on top of the flow. The optimal perturbation is helical. G (max. growth) depends on the parameters.

Re=2000, *Wo*=11, *A*=1

2. Transient growth of perturbations

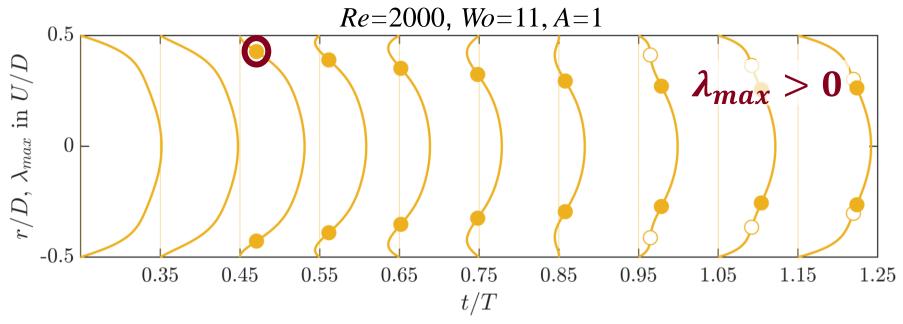
Turbulent production sticks to the radial location of inflection points in the laminar profile



2. Origin of the helical perturbation

Inflectional profiles are linked with inviscid instabilities (Rayleigh, Fjørtoft)

At sufficiently high Re, Wo > 5, A > 0.5: $\lambda_{max} > 0!!$ (Relevant for cardio. Flows!)



The key is the difference on time scales between the (slow) laminar profile and (fast) perturbations.

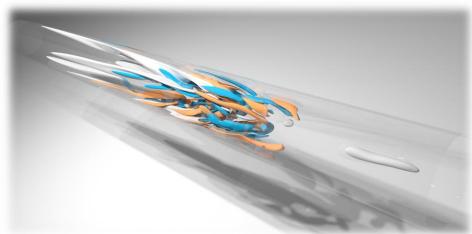
Contents

- 1) (Intro) Steady pipe flow: turbulence transition and transitional regime
- 2) (Results) Transition to turbulence in Pulsatile Pipe Flow
- 3) (Results) Transitional regime of Pulsatile Pipe Flow
- 4) Conclusions

3. Triggering turbulence in pulsatile pipe flow

3. Puffs in pulsatile pipe flow

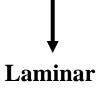
The first long lived structures are localized turbulent puffs



Puff at Re = 2400, Wo = 11, A = 1.4

Behavior depends on the flow parameters:

Turbulent



3. Are inflection points important for turbulence?

I perfomed master-slave pairs of DNS:

1 with 1 without inflection points
in the mean profile

At $A \ge 0.5$ and $5 \le Wo \le 14$ puffs make use of inflection points to survive!

Thus turbulence also takes advantage of instabilities to survive low *Re* phases of the period!

3. Reduced-order Model

I **extended the model** by Barkley (2015) at Wo > 5, $0.5 \le A \le 1$

I added two physical mechanisms:

- 1) instantaneous instability
- 2) a **time lag** between **turbulence** and **driving**!

The model **reproduces** all the **behaviors** in pulsatile pipe flow in a broad parametric regime

Contents

- 1) (Intro) Steady pipe flow: turbulence transition and transitional regime
- 2) (Results) Transition to turbulence in Pulsatile Pipe Flow
- 3) (Results) Transitional regime of Pulsatile Pipe Flow
- 4) Conclusions

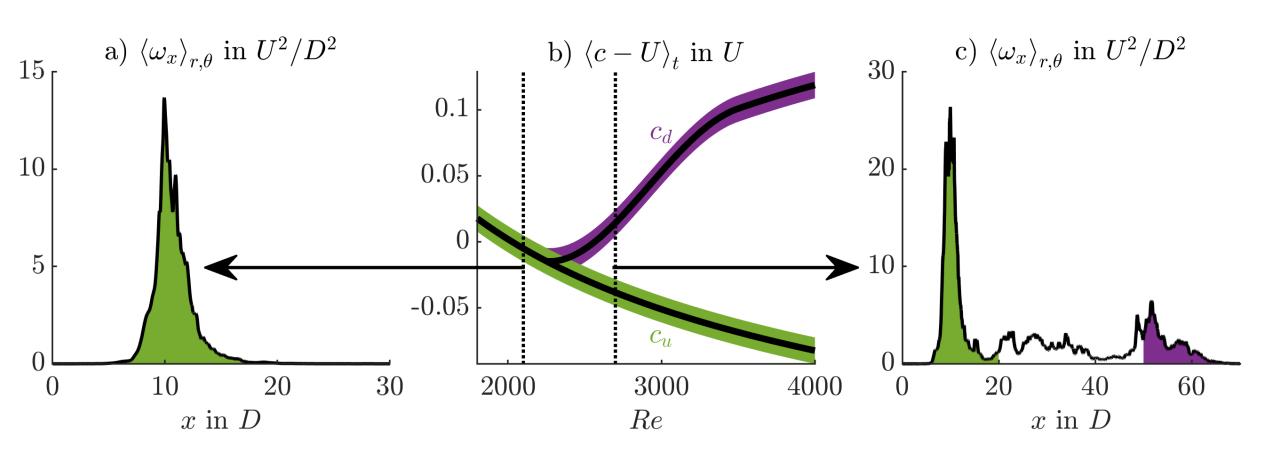
4. Conclusions

- 1) Transition depends on instantaneous instabilities
- 2) Transition is more likely to happen during flow deceleration

- 3) Turbulence appears as **localized puffs**
- 4) A simple reduced-order model reproduces their dynamics

pipe flow code!

Appendix: Puffs front speeds



1. Model of puffs in SSPF

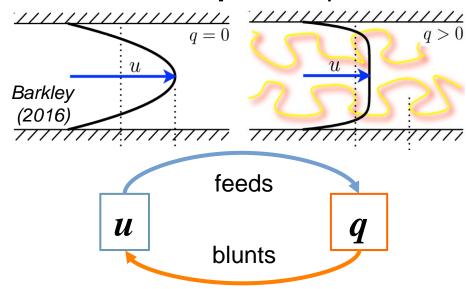
Barkley (2015, *et al.*)

Only axial direction and time (x,t)

 $q \rightarrow$ local turbulent intensity

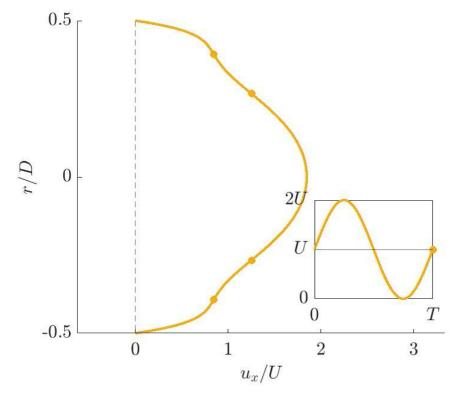
 $u \rightarrow local mean shear$

Fits the **front speed** of puffs

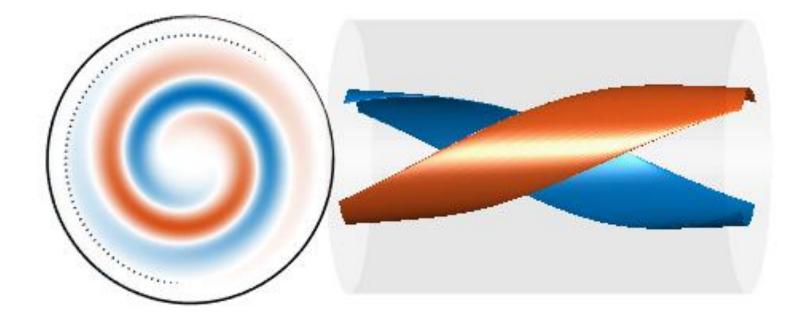


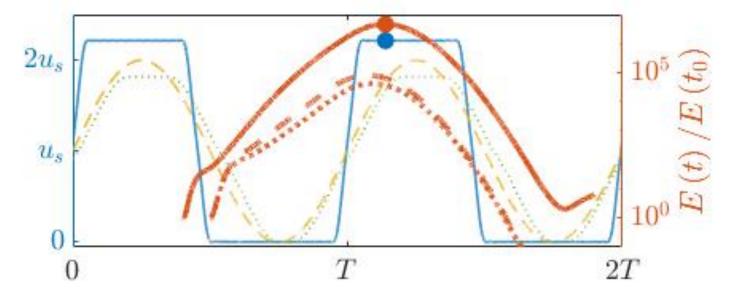
2.Transient growth of perturbations

We look for the **initial condition** that can grow(G) the most on top of the flow. The optimal perturbation is helical. G (max. growth) depends on the parameters.



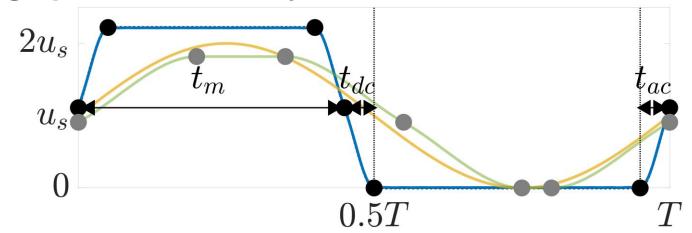
Appendix:





Appendix: effect of waveform on growth

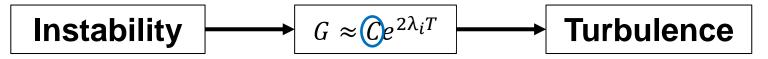
Huge parametric analysis tells us:



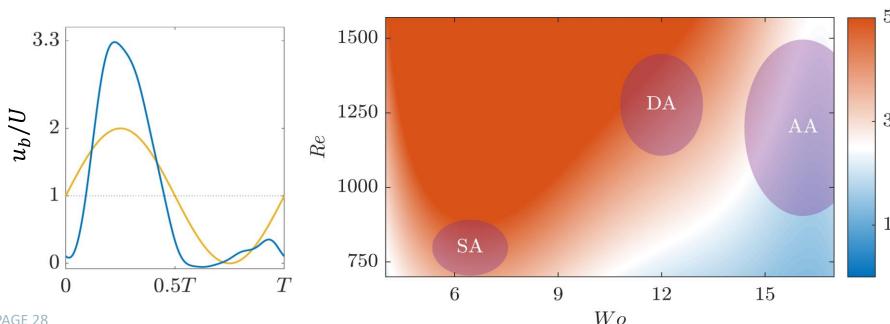
How to increase perturbation growth (G):

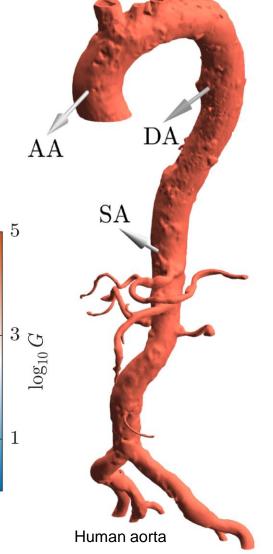
2. Effect of the waveform on transition

Transition depends on the instantaneous instability Instability depends on parameters (Re, Wo, waveform)



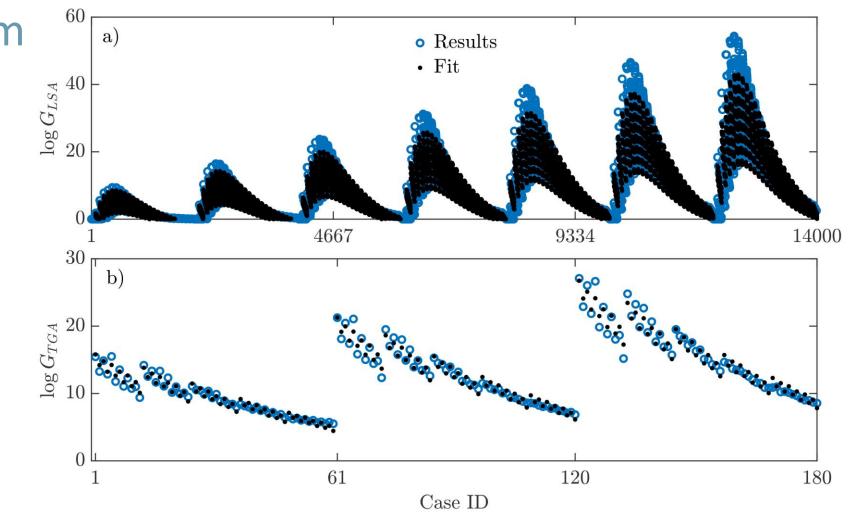
Aorta waveform is highly susceptible to transition!



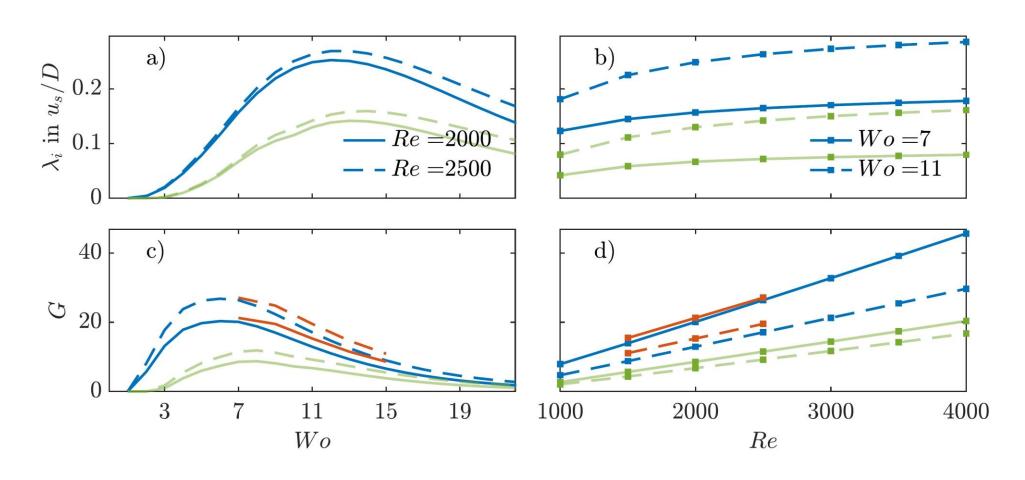


Appendix: LSA and

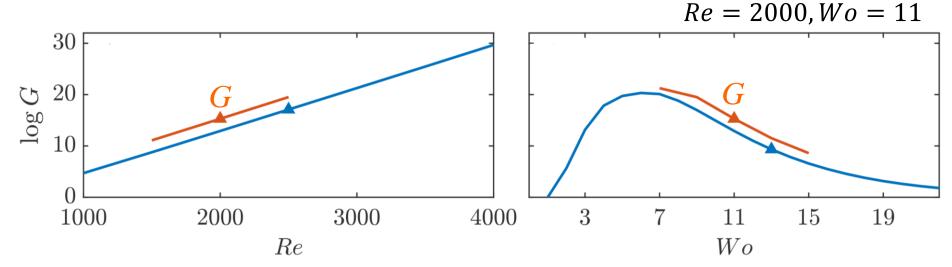
waveform



Appendix: growth of perturbations and waveforms



Appendix: TGA vs LSA growth



Inflection points render the laminar profile instantaneously unstable

Growth depends on:

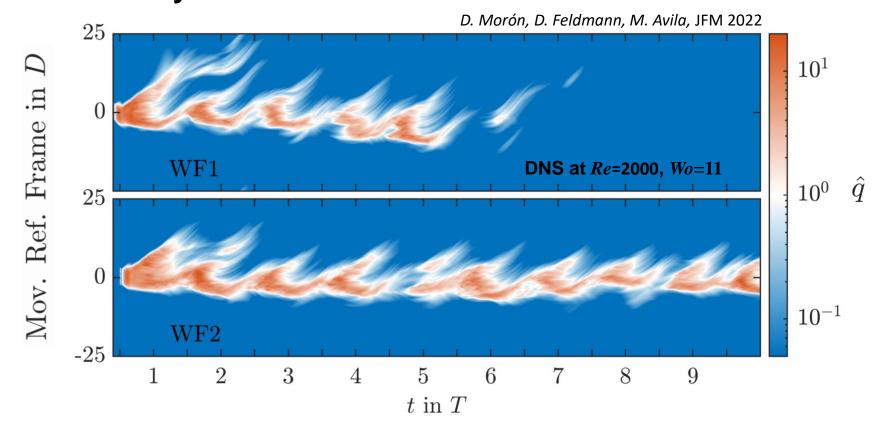
- How long it is unstable
- How much unstable it is:

$$\lambda_{i} = \frac{1}{T} \int_{t_{0}}^{t_{0} + \Delta t_{u}} \lambda_{\max}(t) dt$$
$$\frac{E_{\max}}{E_{0}} \propto \exp(2 \cdot \lambda_{i} \cdot T)$$

Good agreement with optimal perturbation transient growth

Appendix: Effect of waveform on puffs

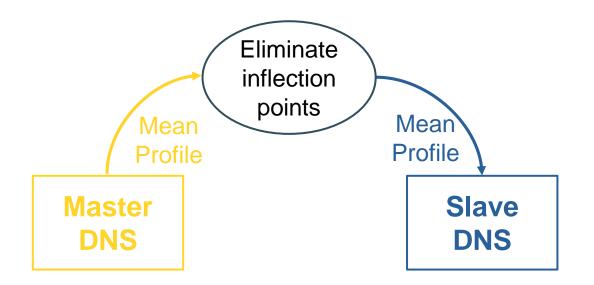
Waveforms with rapid accelerations/decelerations (WF1) promote **transition** but also **turbulent decay**.

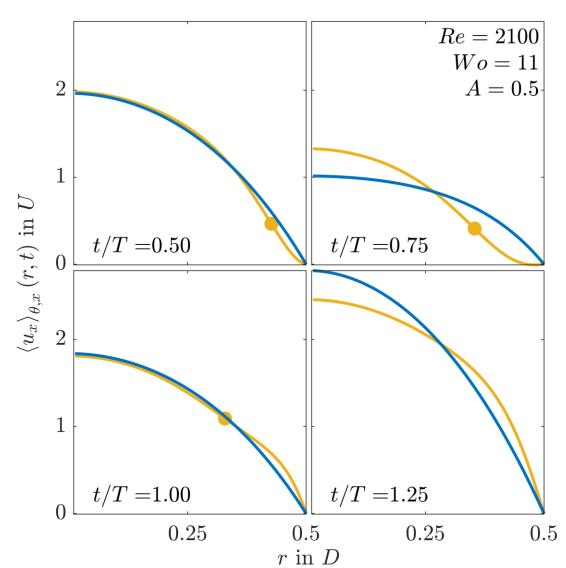


3. Effect of inflection points

I perform pairs of **DNS** with the same initial puff

- 1: DNS of pulsatile pipe flow (master)
- 2: DNS of pulsatile pipe flow with artificial mean profiles without inflection points (slave)





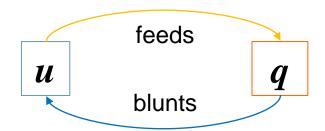
Appendix: Model of puffs in SSPF

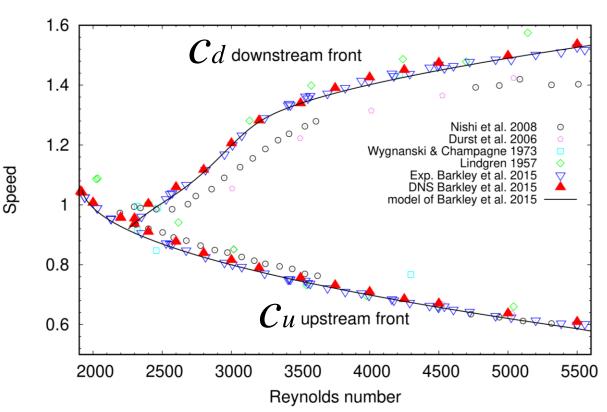
$$\frac{\partial q}{\partial t} + (u - \zeta)\frac{\partial q}{\partial x} = f(q, u) + D\frac{\partial^2 q}{\partial x^2}$$

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = g(q, u)$$

$$f(q, u) = q(r + u - U_0 - (r + \delta)(q - 1)^2)$$

$$g(q, u) = \epsilon_1(U_0 - u) + \epsilon_2(\bar{U} - u)q$$





Appendix: Slave Profile

We minimize a functional at each time step

$$S = 2 \int_0^R \mathcal{L}(r, U_S, U_S') dr$$

$$\mathcal{S} = 2 \int_0^R \mathcal{L}(r, U_S, U_S') dr$$

$$\mathcal{L} = \frac{1}{2} U_S'^2 r + \lambda_L \left(U_S r - \frac{Q}{2R} \right) + \mu_L \left(\frac{1}{2} U_S^2 r - \frac{E_M}{2R} \right)$$

The first condition makes the shear monotonic

The second condition sets the bulk velocity.

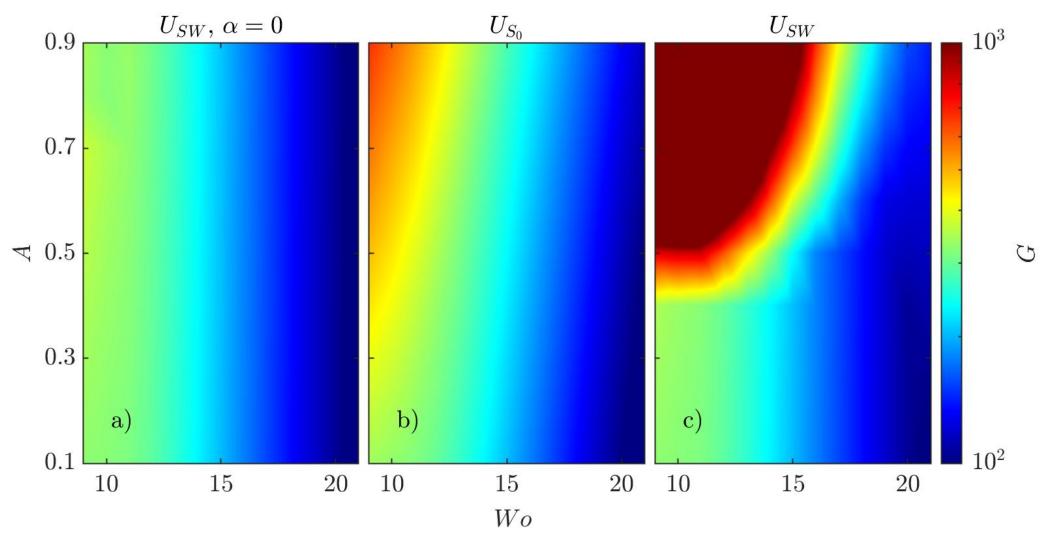
$$2\int_0^1 U_S r \mathrm{d}r \mathrm{d} = Q = \sqrt{\frac{3E_L}{2}}$$

The third the energy of the profile

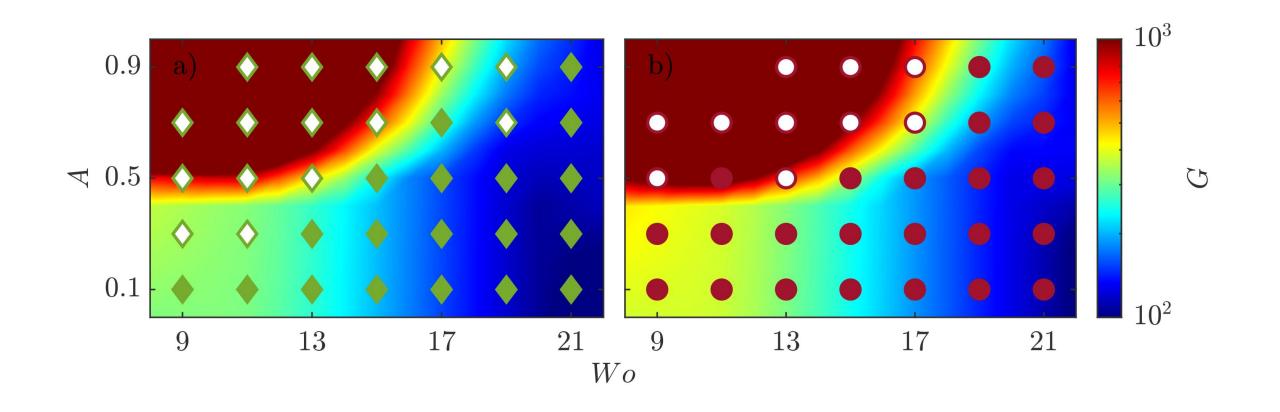
$$2\int_0^1 \frac{1}{2} U_S^2 r \mathrm{d}r \mathrm{d} = E_M$$

$$U_S = \frac{\lambda_L}{\mu_L} \left(\frac{I_0 \left(\sqrt{\mu_L} r \right)}{I_0 \left(\sqrt{\mu_L} \right)} - 1 \right)$$

Appendix: Transient growth of master/slave profiles



Appendix: Puff survival in master/slave DNS



Appendix: Model for puffs in pulsatile pipe flow

$$\frac{\partial q}{\partial t} = -\left(u - \underline{\zeta}\bar{U}(t)\right)\frac{\partial q}{\partial x} + f_{EBM}(q, u) + \underline{D}\frac{\partial^{2}q}{\partial x^{2}} + \sigma\left(Re\right)\tau\left(t, x\right)q$$

$$1\frac{D}{U} \to 0.28 \ t_c$$

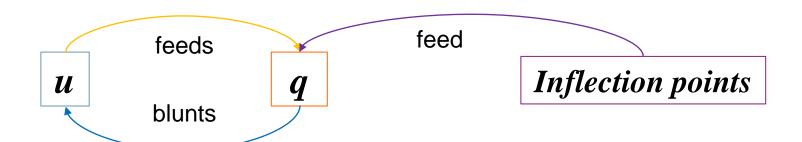
$$\frac{\partial u}{\partial t} = -u \frac{\partial u}{\partial x} + g_{EBM} (q, u)$$

$$\phi \propto \tan^{-1} Wo$$

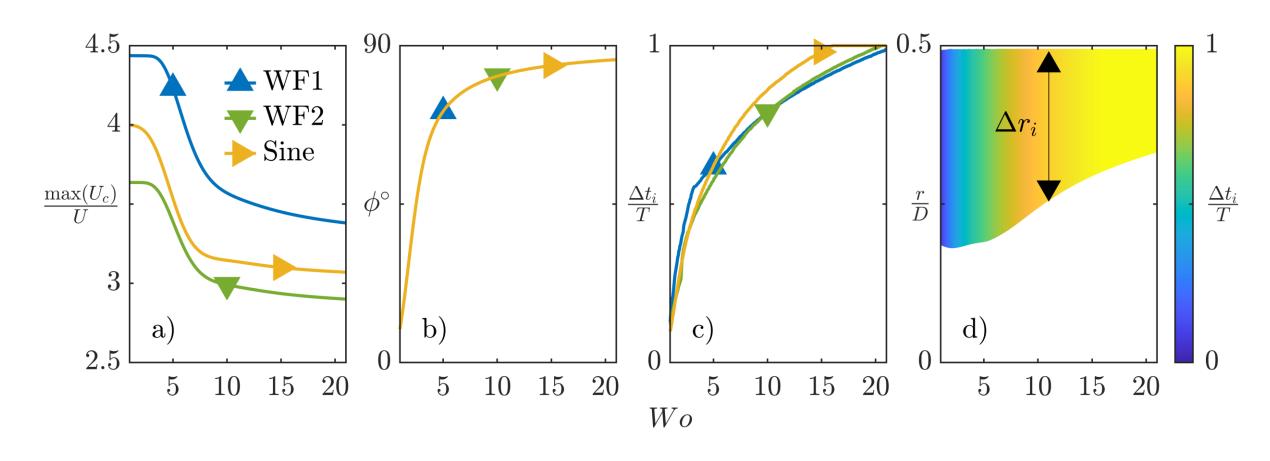
 $\sigma \propto Re$

$$f_{EBM}(q, u) = q \left[r \bar{U}(t + \phi) + \gamma \lambda + u - U_c(t) - \left(r \bar{U}(t + \phi) + \delta \right) (q - 1)^2 \right]$$

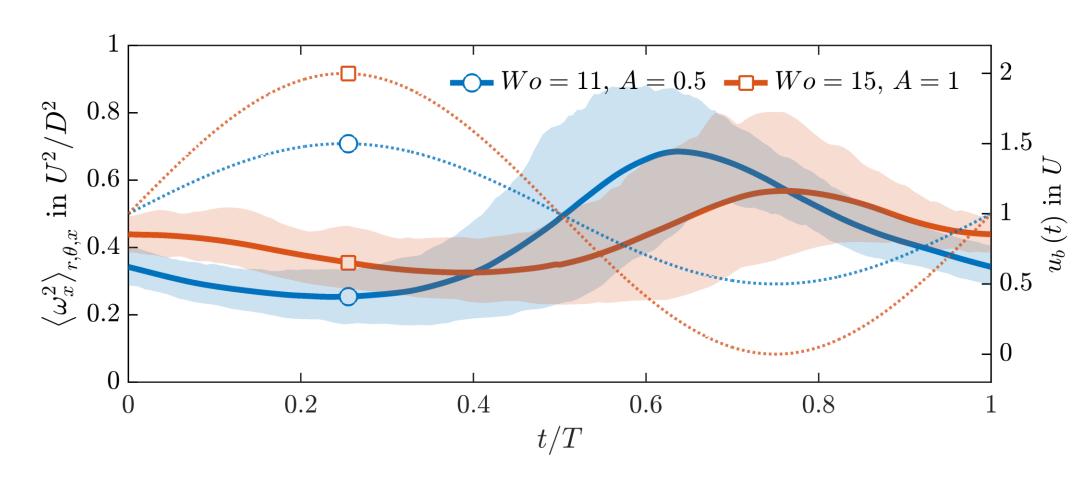
$$g_{EBM}(q, u) = \epsilon \left(U_c(t) - u\right) + 2\epsilon \left(\bar{U}(t) - u\right) q + P_G(t) + F_{v_0}(t)$$



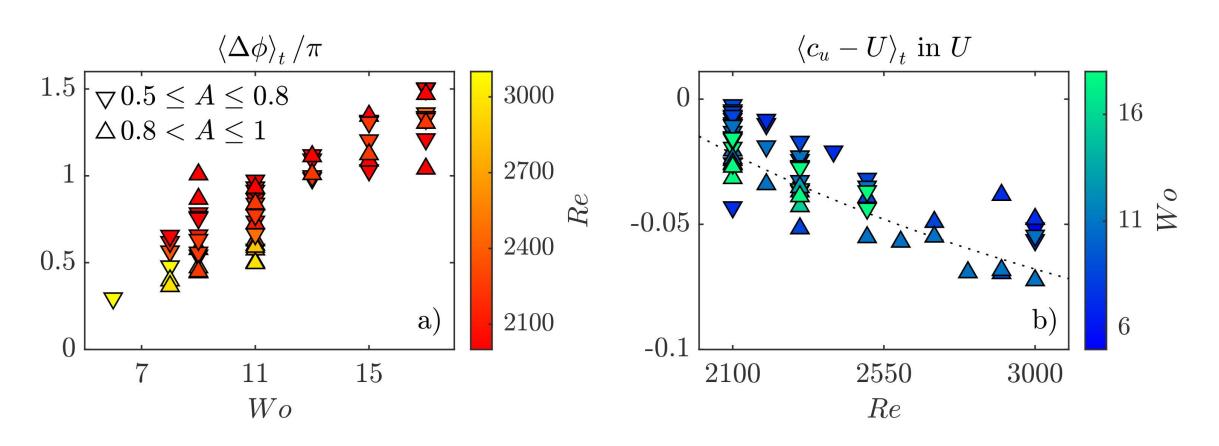
Appendix: Justification of phase lag in the model



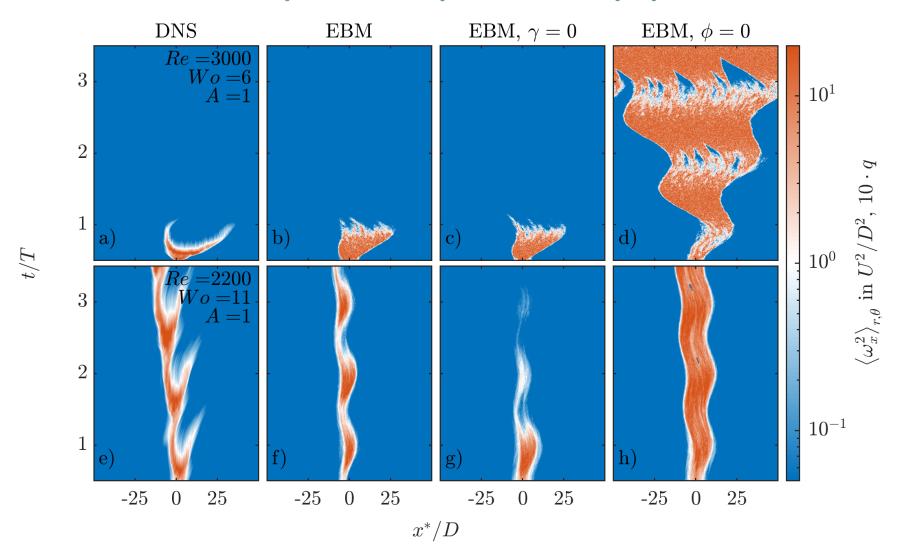
Appendix: Justification of phase lag in the model



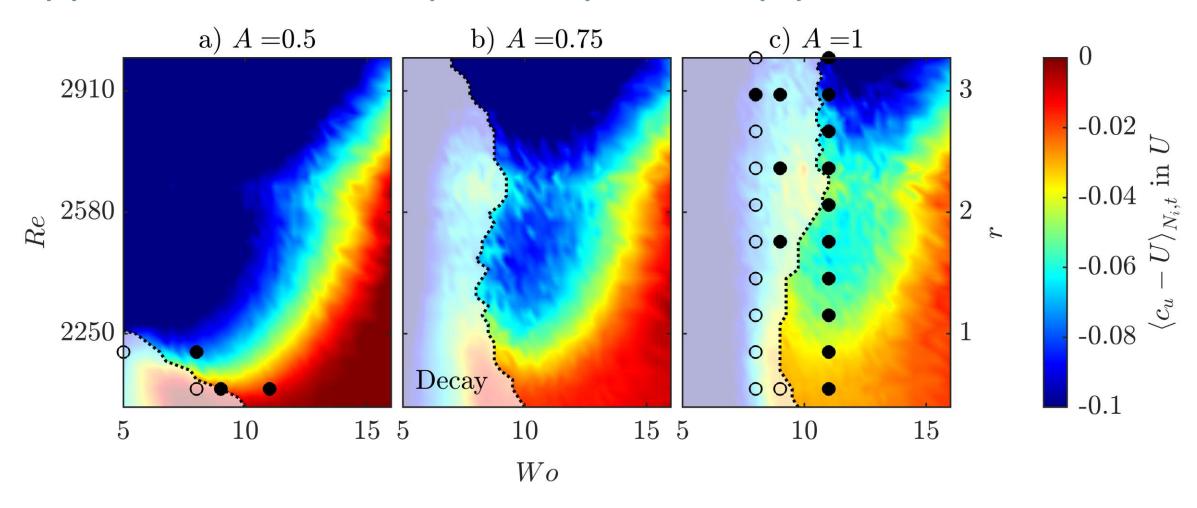
Appendix: Justification of phase lag in the model



Appendix: Model for puffs in pulsatile pipe flow



Appendix: Model for puffs in pulsatile pipe flow



Appendix: spectral

$$f(x) = \sum_{k=-K/2}^{\frac{K}{2}-1} \hat{f}_k e^{ikx}$$

$$\int_0^{2\pi} f^2 dx = 2\pi \sum_k^{\infty} \hat{f}_k^2$$

$$\int_0^{2\pi} f^2 dx = 2\pi \sum_{k=0}^{\infty} \hat{f}_k^2$$

$$2\pi \hat{f}_{N/2} = \int_0^{2\pi} f e^{-iNx/2} dx = \frac{-2}{iN} [f(2\pi) - f(0)] + \frac{2}{iN} \int_0^{2\pi} \frac{df}{dx} e^{-iNx/2} dx$$

$$\hat{f}_{k} = \frac{1}{K} \sum_{j=0}^{K-1} \left[\left(\sum_{m=-K/2}^{\frac{K}{2}-1} \hat{g}_{m} e^{imx_{j}} \right) \right] \left(\sum_{n=-K/2}^{\frac{K}{2}-1} \hat{h}_{n} e^{inx_{j}} \right) e^{-ikx_{j}} = \sum_{m+n=k} \hat{g}_{m} \hat{h}_{n} + \sum_{m+n=k \pm K} \hat{g}_{m} \hat{h}_{n}$$

Appendix: LSA&TGA

$$u = \sum_{m=0}^{m} \sum_{\alpha=0}^{\alpha} \sum_{l=0}^{L} \left[a_l^{(1)} v_{l,m,\alpha}^{(1)}(r,t) + a_l^{(2)} v_{l,m,\alpha}^{(2)}(r,t) \right] e^{i(m\theta + \alpha x)}$$

Step 1: Pressure predictor

$$\nabla^2 \bar{p} = -\nabla \cdot [2N_u^n - N_u^{n-1}]$$

Step 2: Velocity predictor

$$\frac{3u^* - 4u^n + u^{n-1}}{2\Delta t} + 2N_u^n - N_u^{n-1} = -\nabla \cdot \bar{p} + \frac{1}{Re}\nabla^2 u^*$$

Step 3: Pseudo pressure

$$\nabla^2 \phi = -\nabla \cdot u^*$$

Step 4: Correct pressure and velocity

$$p^{n+1} = \bar{p} + \frac{3}{2\Lambda t}\phi$$

$$u^{n+1} = u^* - \nabla \phi$$

Appendix: grid

$$\delta_{\nu} = \frac{\nu}{u_{\tau}} = \frac{D}{2Re_{\tau}}$$

$$u_{\tau} = \sqrt{\frac{\tau_w}{\rho}}$$

$$Re_{\tau} = \frac{Du_{\tau}}{2\nu}$$

Step 1: Estimate dissipation

$$\left\langle \frac{\partial p}{\partial x} \right\rangle_t U \approx \rho \varepsilon$$

$$\frac{\tau_w}{\rho U^2} = \frac{1}{8} \frac{0.316}{Re^{1/4}}$$

$$\left\langle \frac{\partial p}{\partial x} \right\rangle_t \approx \left\langle \frac{4\tau_w}{D} \right\rangle_t$$

$$Re_{\tau} = \frac{u_{\tau}}{2U}Re = 0.099373 Re^{7/8}$$

$$\eta = \left(\frac{v^3}{\varepsilon}\right)^{1/4} \approx \left(\frac{Dv^3}{4u_\tau^2 U}\right)^{1/4}$$

$$\eta^{+} = \frac{\eta}{\delta_{\nu}} = \left(\frac{Du_{\tau}^{2}}{4U\nu}\right)^{1/4} = \left(\frac{u_{\tau}}{2U}Re_{\tau}\right)^{1/4} = \left(\frac{Re_{\tau}^{2}}{Re}\right)^{1/4}$$

$$\Delta r^{+} = \frac{Du_{\tau}}{2N_{r}\nu} \to N_{r} \ge \frac{Re_{\tau}}{\eta^{+}} \to N_{r} \ge 0.31523Re^{11/16}$$

Appendix: Useful

SexI-Womersley profile

$$U_{SW} = real \left\{ \sum_{n=0}^{n} \frac{iP_n}{\rho n\omega} \left[1 - \frac{J_0(Wo \, n^{1/2} i^{3/2} r/R)}{J_0(Wo \, n^{1/2} i^{3/2})} \right] e^{in\omega t} \right\}$$

Rayleigh criteria
$$v = \hat{v}e^{i(\alpha x - \alpha ct)} \rightarrow (U - c)(D^2 - k^2)\hat{v} - U''\hat{v} = 0$$

$$\int_{-1}^{1} \frac{U''c_i|\hat{v}|^2}{(U - c)^2}dy = 0$$

$$\int_{-1}^{1} \frac{U''c_i|\hat{v}|^2}{(U-c)^2} dy = 0$$

Fjørtoft criteria

$$U^{\prime\prime}(U-U_S)<0$$

Cylindrical correction

$$Q = \frac{r}{m^2 + \alpha^2 r^2} U'$$

$$Re_{\Delta x} = \frac{a\Delta t}{D}$$

Blood viscosity

$$v\sim 2.8-3.8\ 10^6m^2/s$$

$$\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}, \qquad u = -\frac{\partial \Psi}{\partial y}, \qquad v = \frac{\partial \Psi}{\partial x}$$

BCon
$$f(r, \theta + \pi) = \pm f(-r, \theta)$$

$$u_{\pm} = u_r \pm i u_{\theta}$$

ZARM

4.Outlook

- 1) Effect of fluid-structure interaction
- 2) Transition and turbulence in more complex geometries
- 3) Non-Newtonian effects

- 4) Use puffs in pulsatile pipe flow to study puffs split and decay
- 5) Phase-dependent predictability of extreme events
- 6) Use low-order model to design control laws