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● Multiscale flows are common in nature and industrial applications

● In multiscale flows coherence is shed at different length and time scales simultaneously

● Multiscale flows can be fundamentally different from flows where only one scale is present

➢ Generation of new coherent structures [1, 2] 

➢ Enhanced mixing [3]
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Multiscale interactions in wind turbine wakes 
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Important frequencies in wind turbine wakes 
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Details in [5]
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A new definition of the near wake
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Wake meandering frequency
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Mode decomposition (without FST) 
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Coherent energy budgets

[1] studied coherent energy budgets in a flow containing two unequal cylinders and reported

Primary modes: Energised by the mean flow (fm , fc)

Secondary modes: Energised by other modes through non-linear triadic interaction (fc±fm)

Mixed mode: Energised by both the mean flow and non-linearity (2fm , 3fm)
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Coherent kinetic energy budget equation, details in [1,2]
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Effect of freestream turbulence (FST)
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Ti - Freestream turbulence intensity

Lv - Integral length scales in freestream

Mean centreline location (yc)
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Important frequencies in presence of FST (λ = 6)

Ti ~1% Ti ~3.6% Ti ~9% Ti ~12.4%

Tip region, near wake

x/D = 0.5, y/D = 0.55

● The tip vortex related frequencies get weaker with increasing FST.

● The energy content in the wake meandering frequency range increases.

● A distinct peak is observed in the wake meandering frequency range for the no grid case.

● Multiple frequencies are present in the wake meandering frequency range in the presence of FST.

Central region, far wake

x/D = 5, y = yc
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Mode clustering for the FST cases

Iteration 1 Iteration 2 Iteration 4

No grid

Ti ~ 3.6%

[9] Beit-Sadi, M., Krol, J. and Wynn, A., 2021. International Journal of Heat and Fluid Flow, 88, p.108766.
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Important modes after clustering

No grid Ti ~ 3.6%

• For the no grid case, the wake meandering mode looks similar before/after clustering (see slide 6).

• Wake meandering mode is stronger and wider in presence of FST.

• The tip vortices breakdown earlier with increasing FST levels. 
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Energy budget analysis with mode clustering

No grid Ti ~ 3.6%

• For the no grid case, energy budget terms are similar with/without mode clustering.

• With FST, mode clustering does a good job in capturing the physics of the wake meandering 

modes, i.e. the wake meandering modes are stronger with FST. Further, there is a higher 

contribution from non-linear triadic interaction and diffusion.

• The tip vortices show similar energy budgets but are weaker with FST, triadic interactions are 

observed between the tip vortices and wake meandering. 
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Summary and future work

● We studied the near wake of a model wind turbine using a large number of Particle Image Velocimetry experiments. 

● We proposed a new definition of the near wake’s extent that is nearly independent of tip speed ratio for low background turbu lence. 

● We established that wake meandering is related to vortex shedding from the turbine for low background turbulence. 

● Freestream turbulence is shown to impact the wake’s extent in the same way for different tip speed ratios. 

Current and future work will include

● Understanding the energy exchange processes in presence of background turbulence.

● Understanding the effect of changing the turbine geometry (such as the nacelle or tower shape) on the coherent dynamics.  

Aerodynamic Nacelle
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λ = 6 λ = 4.5

● Near wake length reduces with freestream turbulence 

intensity

● Large integral length scales likely have minimal impact on 

wake extent 

Effect of freestream turbulence on the near wake



Wind turbine design

•Freestream velocity = 0.2 m/s

•Max chord based Re ~ 9000

•Flat plate airfoils perform better at low Re [9].

[9] Sunada, S., Sakaguchi, A. and Kawachi, K., 1997. Airfoil section characteristics at a low Reynolds number.
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Effective porosity



Dominant frequency maps

λ = 6λ = 4.5

● Tip vortices form a shell-like structure preventing interaction between the core region of the wake and the outer non-turbulent background.

● The core region is dominated by the wake meandering frequency (fwm) which is stronger for higher λ.

[5] Biswas, N. and Buxton, O.R., 2024. Journal of Fluid Mechanics, 979, p.A34.



Dominant frequency maps for differebt levels of FST (λ = 6)

● The shell-like structure breaks down in presence of freestream 

turbulence.

● More frequencies are excited in the inner wake region, making 

wake meandering a more broadband phenomenon.  
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Mode clustering



All modes



Triadic interaction
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