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“Reduced-order modeling of turbulent reacting flows  
using data-driven approaches” 

Brief summary of the work 

Simulating turbulent flames is a computationally challenging task. This remains true even with the current 
advances in numerical algorithms and high-performance computing. Combustion of even simple fuels, like 
methane, is described by many thermo-chemical state variables, including temperature, pressure and tens 
or even hundreds of chemical compounds that form in a burning flame. Each such variable adds an extra 
model dimension that needs to be accounted and solved for in a simulation. This can increase the 
computational time of a simulation to the point that accurate simulations become unaffordable. 
Dimensionality reduction has thus been explored in the literature to alleviate the high computational cost of 
reacting flow simulations. However, there remain many challenges and unanswered questions that 
dimensionality reduction techniques pose. One of the main challenges is: How can we represent the high-
dimensional reacting system well in lower dimensions? Projecting the thermo-chemical state onto new low-
dimensional coordinates can introduce non-uniqueness in representing modeled quantities (see Fig. A). 
This can significantly hamper reduced-order model performance. The present research project addresses 
the outstanding questions related to dimensionality reduction of combustion datasets. We demonstrate 
how ill-behaved projections can explain the model mispredictions reported in the literature thus far. We 
then provide novel strategies and insights on assessing and improving the quality of low-dimensional 
projections. The techniques developed in this thesis advance the state-of-the-art in model reduction and 
provide tools that can significantly improve the accuracy of numerical simulations of turbulent flames. This 
progress is much needed to support the rapidly developing combustion technologies. Accurate numerical 
simulations will be an indispensable tool to guarantee environmentally safer and more efficient combustion 
across industries. This research project also provides novel software that can be used by the next generation 
of students, researchers and engineers, working in reduced-order modeling. 

Scientific summary 

The main goal of my research is to address the outstanding questions in reduced-order modeling of 
turbulent combustion, such as: How do poor data projections affect modeling? How can we quantify and 
improve data projections? What benefits can we expect in model reduction once the projection is well-
behaved? The challenge of data-driven dimensionality reduction is illustratively visualized in Fig. A, where 
an overlap in projection topology yields high errors in reconstructing a dependent variable. 

During my doctorate, I have developed a novel quantitative metric to characterize the quality of a data 
projection [3]. The metric pays attention to two aspects that affect modeling in particular: non-uniqueness 
and large gradients. A larger value indicates a more problematic projection that can include overlapping 
observations, twists, large gradients, or large curvatures in a projection topology. A smaller value indicates 
an improved projection (see Fig. B). Such metric was not available in the research community thus far. Many 
ad hoc and heuristic guidelines in dimensionality reduction had to be followed in turbulent combustion 
research, and in engineering in general. The metric now provides researchers with a way to automate many 
decisions that impact how a projection looks like. Those include: How to scale the data? Which 
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independent variables to select? Which dimensionality reduction technique to use? How low can the 
projection dimensionality be without losing modeling accuracy? For example, for two experimentally 
measured sets of turbulent flames, F1 and F2, our metric correctly identifies that flames F2 are more 
difficult to parameterize and would require a higher projection dimensionality to achieve the same 
parameterization quality as flames F1 (see Fig. C). This agrees with the physical understanding of the 
flames, where F2 are known to contain stronger effects of turbulence acting to partially extinguish the 
flame. F2 thus contain many more possible thermo-chemical states of the flame than F1, and our 
quantitative metric is capable of capturing this phenomenon. The metric proposed can find applications in 
virtually any domain of science and engineering. In my research, I propose various interdisciplinary 
applications of the metric to reacting flows, atmospheric physics, plasma flows, and even biomedical 
sciences. In the original publication, published in the Nature Portfolio, we argue that further improvements 
in parameterization quality can be achieved in many areas of research if the low-dimensional parameter 
space is thoroughly explored and then assessed using the proposed metric. 

I have further applied the proposed metric in dimensionality reduction strategies that improve the 
projection quality (top panel of Fig. D). We apply the metric as an objective function to minimize in 
selecting the appropriate thermo-chemical state vector for model reduction purpose [4]. My goal was to 
address the gap in the reacting flow simulation literature, where various authors have performed ad hoc 
state vector selections, without giving detailed insights into how selecting or discarding some variables 
impacts the projection quality. I this work, we offer two quantitative algorithms that allow for significant 
improvements in parameterization quality. The associated paper is published in the most prestigious venue 
for combustion researchers, The Proceedings of the Combustion Institute. Following excellent reviews, this 
paper has received the Distinguished Paper Award from the Combustion Institute. 
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Another strategy to improve projection quality employs artificial neural networks (bottom panel of Fig. D). 
We introduce a novel modification to encoding-decoding architectures, where we optimize the projection 
directly for any projection-independent and projection-dependent quantities of interest (QoIs). This strategy 
naturally promotes improved projections to emerge during neural network training since non-uniqueness 
and steep gradients increase the mean-squared-error loss function. Thus, projections that do exhibit 
topological issues are immediately penalized and discarded. We demonstrate that this strategy can become 
an effective replacement of standalone dimensionality reduction techniques used thus far in the combustion 
literature, since it provides vast improvements to projection topologies. 

The ultimate goal of this research is to improve numerical simulations of real flames (Fig. E). Problems 
reported in the literature thus far can stem from poorly-behaved low-dimensional projections and high 
errors in models that predict thermo-chemistry a posteriori. Fig. E shows how overlap on a projection can 
cause the transport direction to diverge away from the correct solution. This is due to injecting ambiguity in 
reconstruction models, enacted during and after simulation. This research provides strategies that can be 
deployed in numerical simulations. We show that significant improvements in predicting thermo-chemistry 
can be achieved following our proposed guidelines. This can have a broad impact on combustion 
engineering and combustion industries that require faster tools to help improve combustion as a process. 
The future goal is to move towards more efficient combustion with lower emissions of harmful pollutants. 

Throughout my doctoral research, I have also been actively involved in developing novel software. The 
primary output of my work in this regard is an open-source Python library, PCAfold [5]. It collects all of the 
novel tools and algorithms that I have developed during my Ph.D., and has already been appreciated by 
many researchers worldwide in combustion and beyond. I paid particular attention to documenting the 
software precisely and creating numerous illustrative tutorials that can guide future students in the subject. 
The documentation is available at: https://pcafold.readthedocs.io/. The second library that I have 
developed, multipy, has a didactic purpose and is aimed at helping students learn the subject of 
multicomponent mass transfer. It can be particularly useful to students performing research in fluid dynamics 
and multicomponent flows, including combustion. I have also been dedicated to sharing my code for 
reproducing our research results which has been widely appreciated by the academic community. 

Five selected publications & indication of the total research output volume 

My research resulted in total of six peer-reviewed journal articles, five of which I am the lead author of. I 
have also written two book chapters in edited collections as the lead author (for Cambridge University Press 
and Springer).  I currently have one more paper under review in the journal Patterns and one more paper to 
be submitted in July 2023 to the journal Combustion and Flame, both on research coming from my Ph.D. 
dissertation. I am currently working on a review paper on dimensionality reduction for reacting flows for the 
journal Progress in Energy and Combustion Science as the lead author. This paper will present and critically 
review many of the insights gained during my doctoral work.
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