

UNIVERSITÉ DE BRUXELLES

ULB

turbulent reacting flows using data-driven approaches

Kamila Zdybał

Supervisors: Prof. Alessandro Parente, Prof. James C. Sutherland

12 October 2023 18th ERCOFTAC Autumn Festival, Liège

European Research Council Established by the European Commission

Reduced-order modeling O^{\dagger}

The goal of a reacting flow simulation.

DNS simulation of an *n*-heptane/air jet flame

A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch. Formation, growth, and transport of soot in a three-dimensional turbulent non-premixed jet flame. A. Attili, F. Bisetti, M.E. Mueller, H. Pitsch. Effects of non-unity Lewis number of gas-phase species in turbulent non-premixed sooting flames.

The goat of a reacting flow simulation. challenge

In my doctoral thesis, I've built tools to help improve **reduced-order models**.

Dimensionality reduction

There's four steps to building ROMs.

Projecting high-dimensional data onto lower dimensions can introduce non-uniqueness.

Regression model will likely struggle in the region of overlap.

Can we quantify which projection is "**good**"?

K. Zdybał, E. Armstrong, J.C. Sutherland, A. Parente Cost function for low-dimensional manifold topology assessment

E. Armstrong, J. C. Sutherland, 2021. A technique for characterising feature size and quality of manifolds. *Combustion Theory and Modelling*, *25*(4), pp.646-668.

E. Armstrong, J. C. Sutherland, 2021. A technique for characterising feature size and quality of manifolds. *Combustion Theory and Modelling*, *25*(4), pp.646-668.

filter width:

$$\mathbf{C} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \cdot \hat{\mathcal{D}}(\sigma) \mathrm{d}\widetilde{\sigma}$$

$$\mathbf{C} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \cdot \mathbf{\hat{\mathcal{D}}}(\sigma) \mathrm{d}\widetilde{\sigma}$$

 $\mathcal{L} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \right) \cdot \hat{\mathcal{D}}(\sigma) d\widetilde{\sigma}$

$$\mathbf{C} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \cdot \hat{\mathcal{D}}(\sigma) d\widetilde{\sigma}$$

$$\mathbf{f} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \cdot \hat{\mathcal{D}}(\sigma) \mathrm{d}\widetilde{\sigma}$$

$$\mathbf{C} = \int_{\widetilde{\sigma}_{min}}^{\widetilde{\sigma}_{max}} \left(\left| \widetilde{\sigma} - \widetilde{\sigma}_{peak} \right|^r + b \cdot \frac{\widetilde{\sigma}_{max} - \widetilde{\sigma}_{min}}{\widetilde{\sigma}_{peak} - \widetilde{\sigma}_{min}} \right) \cdot \hat{\mathscr{D}}(\sigma) d\widetilde{\sigma}$$

We demonstrated the application of the cost function to various datasets.

Numerical and experimental combustion

Atmospheric pollutant dispersion

Argon plasma

We propose a manifold-informed state variable selection strategy.

PROCEEDINGS OF THE COMBUSTION INSTITUTE K. Zdybał, J.C. Sutherland, A. Parente Manifold-informed state vector subset for reduced-order modeling Distinguished Paper Award from The Combustion Institute

Our variable selection is optimized with respect to the cost function.

We propose a Qol-informed dimensionality reduction strategy.

K. Zdybał, A. Parente, J.C. Sutherland Improving reduced-order models through nonlinear decoding of projection-dependent outputs

We compute data representations informed by important **quantities of interest (Qols)**.

We compute data representations informed by important quantities of interest.

We compute data representations informed by important quantities of interest.

We compute data representations informed by important quantities of interest.

We've built tools to help improve reduced-order models.

I have developed two open-source Python libraries:

PCAfold: Tools and algorithms for low-dimensional manifold assessment and optimization

Background photo by Pawel Czerwinski on Unsplash

multipy: An educational Python library for **multi**component mass transfer

The tools and algorithms from my thesis have been used by others.

E. Armstrong, J.C. Sutherland Reduced-order modeling with reconstruction-informed projections **Combustion and Flame**, 2023

A.C. Ispir, B.H. Saracoglu, T. Magin, A. Coussement A methodology for estimating hypersonic engine performance by coupling supersonic reactive flow simulations with machine learning techniques Acta Astronautica, 2023

is used by students and researchers from various institutions.

SoftwareX

PROCEEDINGS OF THE COMBUSTION INSTITUTE

nature Scientific Reports

APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE

Heat, Power and Process

SoftwareX

CellPress
Patterns

K. Zdybał, E. Armstrong, A. Parente, J.C. Sutherland PCAfold: Python software to generate, analyze and improve PCA-derived low-dimensional manifolds

K. Zdybał, J.C. Sutherland, A. Parente Manifold-informed state vector subset for reduced-order modeling

K. Zdybał, E. Armstrong, J.C. Sutherland, A. Parente Cost function for low-dimensional manifold topology assessment

A.C. Ispir, **K. Zdybał**, B.H. Saracoglu, T. Magin, A. Parente, A. Coussement Reduced-order modeling of super-sonic fuel-air mixing in a multi-strut injection scramjet engine using machine learning techniques

K. Zdybał, G. D'Alessio, A. Attili, A. Coussement, J.C. Sutherland, A. Parente Local manifold learning and its link to domain-based physics knowledge

K. Zdybał, E. Armstrong, A. Parente, J.C. Sutherland PCAfold 2.0—Novel tools and algorithms for low-dimensional manifold assessment and optimization

K. Zdybał, A. Parente, J.C. Sutherland Improving reduced-order models through nonlinear decoding of projection-dependent outputs

DATA-DRIVEN FLUID MECHANICS COMBINING FIRST PRINCIPLES

AND MACHINE LEARNING

EDITED BY Miguel A. Mendez, Andrea laniro, Bernd R. Noack and Steven L. Brunton

K. Zdybał, G. D'Alessio, G. Aversano, M. R. Malik, A. Coussement, J. C. Sutherland, A. Parente

K. Zdybał, M. R. Malik, A. Coussement, J. C. Sutherland, A. Parente Reduced-order modeling of reactive flows using data-driven approaches

Advancing reactive flow simulations with data-driven models

Selected conference talks:

- 18th International Conference on Numerical Combustion
- 39th International Symposium on Combustion

Invited talks:

UNIVERSITÉ LIBRE DE BRUXELLES

Sciety for Industrial and Applied Mathematics

- Mathematics of Data Science, 2022
- Computational Science and Engineering, 2023

UNIVERSITÉ LIBRE DE BRUXELLES

Kamila Zdybał

12 October 2023 18th ERCOFTAC Autumn Festival, Liège

European Research Council Established by the European Commission

Reduced-order modeling

turbulent reacting flows using data-driven approaches

Supervisors: Prof. Alessandro Parente, Prof. James C. Sutherland