Modal Scale Decomposition in Turbulent Flows

Chair of Fluid Mechanics and Institute of Aerodynamics RWTH Aachen University, Germany

> Esther Lagemann née Mäteling

MOTIVATION

objective: separate data into purposeful components to gain new insight into inherent features

variety of established modal decomposition methods:

- Fast Fourier Transform (FFT)
- Singular Value Decomposition (SVD) / Proper Orthogonal Decomposition (POD)
- Dynamic Mode Decomposition (DMD)
- ... a variety of extensions

FFT

40

MOTIVATION

EMPIRICAL MODE DECOMPOSITION

OVERVIEW

- 1D univariate EMD introduced in 1998
- data-driven decomposition based on intrinsic scales
- modes (IMFs) are sorted with respect to scale size
- ability to process non-linear and unsteady data
- basis system dictated by data
 → modes adaptively biased towards locally dominant frequencies/scales

shortcomings for fluid dynamics

- improper mode alignment
- aliasing in time-frequency domain
- problems of uniqueness
- restricted complexity/dimensionality

2D NOISE-ASSISTED MULTIVARIATE EMPIRICAL MODE DECOMPOSITION

2D Noise-Assisted Multivariate Empirical Mode Decomposition

process 2D snapshots

2D Noise-Assisted Multivariate Empirical Mode Decomposition

process 2D snapshots

find & align common features within multivariate data, e.g. several velocity components

2D Noise-Assisted Multivariate Empirical Mode Decomposition

process 2D snapshots

find & align common features within multivariate data, e.g. several velocity components

improve mode separation and coherence across decompositions by variates of Gaussian noise

2D NA-MEMD FOR TURBULENT FLOWS

- dynamics of large-scale tumble vortex
- varying field of view
- instantaneous mean field can replace ensemble mean
- J. Knöll, E. Mäteling, M. Braun, M. Klaa Schröder. Analysis of the in-cylinder flow DISI engine using high-speed particle in velocimetry. LX Laser (2022)

PHYSICAL MECHANISM BEHIND ACTIVE DRAG REDUCTION

MOTIVATION

AIA RWTHAACHEN UNIVERSITY

How do active drag reduction methods manipulate the internal flow structure to achieve drag reduction?

 \rightarrow tailor methods to any flow configuration with highest efficiency

Albers et al. (2020) Flow, Turbulence and Combustion 105, pp. 125–157

INNER-OUTER INTERACTION

Mäteling et al. (2020) Physical Review Fluids, 5(11), 114610. Mäteling & W. Schröder (2022) Physical Review Fluids 7.3, p. 034603

interaction phenomena:

INNER-OUTER INTERACTION

- superposition (S)
 - interaction via sweeps (sw)
 - interaction via ejections (ej)
- amplitude modulation
- frequency modulation

Mäteling et al. (2020) Physical Review Fluids, 5(11), 114610. Mäteling & W. Schröder (2022) Physical Review Fluids 7.3, p. 034603

INNER-OUTER INTERACTION

degree of inner-outer coherence via spatial cross-correlation coefficient

	$\overline{\mathbf{R}}_{\mathbf{s}}$	$\overline{\mathbf{R}}_{\mathbf{sw}}$	R _{ej}
REF	0.61	0.60	0.36
ACT	0.51	0.51	0.52

- overall, less outer-layer impact on near-wall dynamics (\overline{R}_S)
- reduced top-down communication via sweeps (\overline{R}_{sw})
- increased bottom-up inference related to ejections (\overline{R}_{ej})

joint PDF of large-scale velocity fluctuations close to the wall

increased number & intensity of near-wall ejections → balance outer-layer sweeps → wall-shear stress reduction

SUMMARY

- introduction of the 2D NA-MEMD for spatio-temporal turbulent flow analyses
 - captures unsteady, non-linear, and multi-scale phenomena
- broad range of applicability
 - numerical & experimental data
 - internal & external flows
 - fundamental turbulence research & real-world/industry-related cases
- example: new insight in physical mechanism behind active drag reduction

Thank you very much for your attention!

Questions?

2D NA-MEMD code

