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The ERCOFTAC Best 

Practice Guidelines for 

Industrial Computational 

Fluid Dynamics 

The Best Practice Guidelines (BPG) were commissioned by 

ERCOFTAC following an extensive consultation with 

European industry which revealed an urgent demand for such a 

document. The first edition was completed in January 2000 and 

constitutes generic advice on how to carry out quality CFD 

calculations. The BPG therefore address mesh design; 

construction of numerical boundary conditions where problem 

data is uncertain; mesh and model sensitivity checks; 

distinction between numerical and turbulence model 

inadequacy; preliminary information regarding the limitations 

of turbulence models etc. The aim is to encourage a common 

best practice by virtue of which separate analyses of the same 

problem, using the same model physics, should produce 

consistent results. Input and advice was sought from a wide 

cross-section of CFD specialists, eminent academics, end-users 

and, (particularly important) the leading commercial code 

vendors established in Europe. Thus, the final document can be 

considered to represent the consensus view of the European 

CFD community. 

Inevitably, the Guidelines cannot cover every aspect of CFD in 

detail. They are intended to offer roughly those 20% of the 

most important general rules of advice that cover roughly 80% 

of the problems likely to be encountered. As such, they 

constitute essential information for the novice user and provide 

a basis for quality management and regulation of safety 

submissions which rely on CFD. Experience has also shown 

that they can often provide useful advice for the more 

experienced user. The technical content is limited to single-

phase, compressible and incompressible, steady and unsteady, 

turbulent and laminar flow with and without heat transfer. 

Versions which are customised to other aspects of CFD (the 

remaining 20% of problems) are planned for the future. 

The seven principle chapters of the document address 

numerical, convergence and round-off errors; turbulence 

modelling; application uncertainties; user errors; code errors; 

validation and sensitivity tests for CFD models and finally 

examples of the BPG applied in practice. In the first six of 

these, each of the different sources of error and uncertainty are 

examined and discussed, including references to important 

books, articles and reviews. Following the discussion sections, 

short simple bullet-point statements of advice are listed which 

provide clear guidance and are easily understandable without 

elaborate mathematics. As an illustrative example, an extract 

dealing with the use of turbulent wall functions is given below: 

 Check that the correct form of the wall function is being 

used to take into account the wall roughness. An 

equivalent roughness height and a modified multiplier in 

the law of the wall must be used. 

 Check the upper limit on y+. In the case of moderate 

Reynolds number, where the boundary layer only extends 

to y+ of 300 to 500, there is no chance of accurately 

resolving the boundary layer if the first integration point is 

placed at a location with the value of y+ of 100. 

 Check the lower limit of y+. In the commonly used 

applications of wall functions, the meshing should be 

arranged so that the values of y+ at all the wall-adjacent 

integration points is only slightly above the recommended 

lower limit given by the code developers, typically 

between 20 and 30 (the form usually assumed for the wall 

functions is not valid much below these values). This 

procedure offers the best chances to resolve the turbulent 

portion of the boundary layer. It should be noted that this 

criterion is impossible to satisfy close to separation or 

reattachment zones unless y+ is based upon y*.

 Exercise care when calculating the flow using different 

schemes or different codes with wall functions on the 

same mesh. Cell centred schemes have their integration 

points at different locations in a mesh cell than cell vertex 

schemes. Thus the y+ value associated with a wall-

adjacent cell differs according to which scheme is being 

used on the mesh. 

 Check the resolution of the boundary layer. If boundary 

layer effects are important, it is recommended that the 

resolution of the boundary layer is checked after the 

computation. This can be achieved by a plot of the ratio 

between the turbulent to the molecular viscosity, which is 

high inside the boundary layer. Adequate boundary layer 

resolution requires at least 8-10 points in the layer. 

All such statements of advice are gathered together at the end 

of the document to provide a ‘Best Practice Checklist’. The 

examples chapter provides detailed expositions of eight test 

cases each one calculated by a code vendor (viz FLUENT, 

AEA Technology, Computational Dynamics, NUMECA) or 

code developer (viz Electricité de France, CEA, British Energy) 

and each of which highlights one or more specific points of 

advice arising in the BPG. These test cases range from natural 

convection in a cavity through to flow in a low speed 

centrifugal compressor and in an internal combustion engine 

valve.

Copies of the Best Practice Guidelines can be acquired from: 

ERCOFTAC  CADO 

Crown House 

72 Hammersmith Road 

London W14 8TH, United Kingdom  

Tel: +44 207 559 1429 

Fax: +44 207 559 1428 

Email: Richard.Seoud-ieo@ercoftac.org 

The price per copy (not including postage) is: 

ERCOFTAC members 

 First copy   Free 

 Subsequent copies  45 Euros 

 Students   30 Euros 

Non-ERCOFTAC academics  75 Euros 

Non-ERCOFTAC industrial  150 Euros 



Introduction to the Special Theme

Synthetic Turbulence Models

F.C.G.A. Nicolleau and A.F. Nowakowski

Sheffield Fluid Mechanic Group, University of Sheffield, Department of Mechanical Engineering

Mappin Street, Sheffield S1 3JD, United Kingdom.

The special interest group on ‘Synthetic Turbulence
Model’ SIG42, is relatively recent. It was established in
2008 as an offshoot of SIG35 which is devoted to ‘Multi-
point Turbulence Structure’ 1.
SIG35 focuses on fundamental Eulerian descriptions of
turbulence, by contrast SIG42 aims first at Lagrangian
applications. For such applications, an Eulerian accurate
description is not paramount as long as the details of the
Eulerian field have little effect on the Lagrangian pre-
dictions. As far as these predictions are concerned, the
Eulerian velocity and hence the resolution of the Navier
Stokes equations is not necessary per se. So an ultimate
very economical way of generating Lagrangian trajecto-
ries is to build ad hoc analytical ‘pseudo-Eulerian’ fields
that can be easily integrated. This is what is meant by
‘Synthetic Turbulence Models’ (STM).

It may seem obvious that specific approaches and mod-
elling tactics are needed when it comes to Lagrangian
problems and that Eulerian structures (as referred to in
SIG35) and Lagrangian structures (as needed in SIG42)
may be two separate things. However, it was only af-
ter the IMS/ERCOFTAC/SIG 35/COST 20 workshop,
at Imperial College London, in 2007 that it was decided
to create an independent SIG for what was then mainly
referred to as Kinematic Simulations (KS). These latter
have now become a particular case of a much wider Syn-
thetic Turbulence Modelling (STM) community.

The modelling strategy involved in STM and the
difference between the ‘flow structure’ needed for La-
grangian predictions and the ‘Multipoint Turbulence
Structure’ that SIG35 is referring to is particularly
salient in the problem of stratified flows. This remains
an important area of application of synthetic turbulence
models (see e.g the second contribution). The recogni-
tion of the determinant role of the linear terms in the
capping of the vertical dispersion of particles in strati-
fied flows owes a lot to the different KS studies conducted
on this subject. So that apart from SIG35, SIG142 has
always been an important partner of SIG42.
This special theme bulletin reflects the variety of prob-
lems tackled using some Synthetic Models of Turbu-
lence. Theoretical issues about the generations of syn-
thetic flows are reflected in the first three papers:

• Randomisation and phase coherence in quasi-
homogeneous turbulence, and interactions
by C. Cambon Ecole Centrale de Lyon, France

• Manufactured Turbulence with Langevin equations
by A. A. Mishra and S. Girimaji Aerospace Engineer-

ing Department, Texas A&M University ,College Sta-

tion, Texas, USA

1SIG35 coordinated by C. Cambon was the subject of a recent
special theme in 2011 [1]

2SIG14 devoted to Stably Stratified and Rotating Flows is co-
ordinated by J.M. Redondo

• Subgrid-scale statistics in synthetic helical turbu-
lent fields generated by the multi-scale turnover La-
grangian map
by Y. Li and C. Rosales School of Mathematics and

Statistics, University of Sheffield, UK, Universidad Tec-

nica Federico Santa Maria, Chile

An important area of application of STM has been the
study of the effect of particle inertia on concentration and
clustering as reflected in the next three contributions:

• Singularities in the particle concentration field of in-
ertial particles in turbulent flows
by E. Meneguz & M. W. Reeks School of Mechanical

and Systems Engineering, Newcastle University, UK

• Clustering of laden particles in Kinematic Simula-
tion flows
by F.C.G.A. Nicolleau, M. Farhan, and A.F.
Nowakowski Sheffield Fluid Mechanic Group, Sheffield

UK

• On the Complex Motion of Inertial Particles Near
Unsteady Vortices.
by J.-R. Angilella, T. Nizkaya & M. Buès Nancy-

Université, LAEGO, France

Beyond applications to classical turbulence, KS have
been widely applied to superfluids as illustrated in the
next paper:

• Applications of synthetic turbulence to filament
models of magnetic flux ropes and quantum turbu-
lence
by A. Baggaley School of Mathematics and Statistics

Newcastle University, UK

If KS remains a popular approach it is not by far the
only synthetic turbulence model. More refined models
exist as illustrated in the last contribution:

• Synthetic Turbulence via the Minimal Lagrangian
Map
by C. Rosales Department of Mechanical Engineering,

Universidad Técnica Federico Santa María, Chile.

This introduction only gives an overview of SIG42 activi-
ties. There are more, in particular it is worth mentioning
the recent extension of KS to channel flows [2] as a first
attempt at including wall effects.
We would like to take the opportunity of this first special
theme bulletin to thanks ERCOFTAC for its constant
support of SIG42’s activities.

References

[1] Cambon, C.: Special Theme : Multipoint Turbulence
Structure and Modelling. Ercoftac Bul. 88 (2011).

[2] Clark, N.R., Vassilicos, J.C.: Kinematic Simula-
tion of Fully Developed Turbulent Channel Flow.
Flow Turbulence Combustion 86, 263-293 (2011).
doi:10.1007/s10494-010-9316-x
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Randomisation and Phase Coherence in

Quasi-Homogeneous Turbulence, and Interactions

C. Cambon

Laboratoire de Mécanique des Fluides et d’Acoustique, UMR 5509

École Centrale de Lyon, 69134 Ecully cedex, France

1 Introduction

Kinematic Simulation is an important theme for SIG
42. The generation of synthetic turbulence models by
a superposition of random Fourier modes is a very old
procedure. Following pioneering studies by Kraichnan
[14], a practical model was proposed by Fung et al. [10]
with application to Lagrangian diffusion. Surprisingly,
the same model has been used by several authors un-
til now without the smallest change for various applica-
tions, from Lagrangian diffusion to aeroacoustics. Sev-
eral improvements are discussed in a recent paper [6],
accounting for anisotropy and linear dynamics, or Spec-
tral linear Theory (SLT) as generalized Rapid Distortion
Theory. Prescription of a unique energy spectrum, or
E(k), in isotropic turbulence, can be replaced by pre-
scription of the most general set of basic spectra for
generating second-order two-point statistics of homoge-
neous, arbitrary anisotropic, incompressible turbulence:
energy (but with directional anisotropy) / polarization /
helicity (e(k), Z(k),H(k)) decomposition [3].

Refinement of the spectral description of anisotropic
turbulence at the second order is associated with con-
struction of individual realizations of the velocity field, in
which randomization is given again by synthetic phases.
On the one hand, randomization is useful for creating a
large set of realizations, to which an ensemble average,
denoted by brackets from now on, can be applied. This
is discussed in connection with initialization of DNS, in
which random phases are introduced, but for a single
realization of initial data.

On the other hand, independently of the way of intro-
ducing synthetic phases in individual realizations, spa-
tial two-point second-order correlations lose some real
phase information. This is obvious in homogeneous tur-
bulence using Fourier space, but a similar statement can
be established in the POD decomposition of the spatial
two-point correlation in inhomogeneous turbulence, as
pointed out by Lumley. Such a drawback was overcome
by him through the consideration of three-point statistics
under certain conditions [17].

Importance of three-point cubic correlations is demon-
strated in a recent paper on anisotropic homogeneous
turbulence [7], and we will emphasize here some related
general features using new insights from pod, and revisit
connections with KS and DNS in Fourier space. As our
best example, phase coherence of three-point cubic veloc-
ity correlations is essential for understanding the dynam-
ics of decaying rotating turbulence. Even if we agree with
the Davidson’s group on the creation of inhomogeneous
structures from compact sources by purely linear dynam-
ics, we think that the effect of three-point cubic corre-
lations — with their crucial phase information — is not
correctly accounted for in their interpretation of the de-
cay of rotating homogeneous turbulence [26]. The case of

homogeneous rotating turbulence is addressed in section
3, and contrasted to more general cases of rotating shear
flows. In addition, the very subtle saturated transition
from 3D to 2D structure, shown in rotating turbulence,
is contrasted with a complete two-dimensionalization ob-
tained in quasi-static magnetohydrodynamics, allowing a
mutual better physical understanding in both cases.

Since our favorite theme is essentially homogeneous
turbulence with extensive use of 3D Fourier space, why
looking first at POD decomposition ? Firstly, I remain
very grateful to Marie-Pierre Chauve for an enlighting
talk, given many years ago (1987) almost without any so-
phisticated mathematical tool, for POD applied to tran-
sition to turbulence on a rotating flat disk (e.g. [1] for
mathematical details). Key concepts, such as the de-
gree of randomization, possibly measured by a dedicated
entropy, can be introduced at a better degree of gen-
erality than in Fourier space. It is generally said that
POD modes naturally reduce to Fourier modes in homo-
geneous turbulence, but nothing is said on the diagonal-
ization of two-point second order spectral tensors, which
is a natural application of the analysis in principal com-
ponents, or POD, diagonalization which can be shown
as a byproduct of our (e(k), Z(k),H(k))-decomposition.
Accordingly, a very simple review of POD tools, following
Marie-Pierre Chauve, give a new insight to some proce-
dures used in anisotropic theory carried out in Fourier
space, with application to pseudo-spectral DNS and KS.

This paper, or essay, is organised as follows. A carica-
ture of POD is given in section 2, application to second
order statistics in Fourier space, diagonalizing the spec-
tral tensor and discussing what degree of randomness is
reflected in it, from DNS and KS as well. The main
theme of cubic correlations in dynamics is addressed in
section 4, and section 5 is devoted to conclusions and
perspectives.

2 Starting from a caricature of
POD analysis

As a first example, let us consider a N -component vector
denoted ai, i = 1, N . The dyadic second-order tensor,
Rij = aiaj , or R = a⊗a, is first considered looking at its
intrinsic diagonalized representation. This tensor, obvi-
ously of rank 1, is thus characterized by a single nonzero
eigenvalue, equal to anan, so that its diagonalized form
is

R =




anan 0 . . . 0
0 0 . . . 0

. . . . . . . . . . . .
0 0 . . . 0


 . (1)

This structure is easily found by calculating the deter-
minant

Det (a⊗ a− λI) = λN−1 (anan − λ) .
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Of course, the unique non-zero eigenvalue has the vector
a as its eigenvector, according to

(aiaj) aj = (anan) ai, (2)

whereas the subspace of rank N − 1 related to the N −
1-multiple 0 eigenvalue is just the subspace of vectors
normal to a, such that (aiaj)vj = 0.

Only when statistical averaging is applied, it is possi-
ble to give rise to N nonzero positive different eigenval-
ues, s2

1, s2
2, . . . , s2

N , with 〈anan〉 =
∑

i=1,N s2
i , and with

the following diagonal form

〈R〉 =




s2
1 0 . . . 0
0 s2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . s2

N


 . (3)

By ensemble averaging, the tensor 〈aiaj〉 recovers a pos-
sible rank N , with different N eigenvalues related to
an orthogonal eigenframe, because the averaged tensor
is definite positive. The obvious relationship that gave
anan as the unique nonzero eigenvalue with eigenvector
a no longer works in average because

〈aiaj〉〈aj〉 6= 〈anan〉〈ai〉,

in general.
This simple decomposition applies to an Hermitian

tensor, with ai a complex vector with complex conju-
gate a∗i : The non-averaged Hermitian tensor aia

∗
j has

a single nonzero eigenvalue ana∗n, related to the eigen-
vector a. Only by statistical averaging, the spectrum of
eigenvalues ana∗n, 0, . . . , 0 can be populated by N differ-
ent real positive eigenvalues s1, s2, . . . , sn, whose sum is
〈ana∗n〉.

The Reynolds stress tensor is found for a = u, the
velocity fluctuation. Without averaging, the unique
nonzero eigenvalue is twice the kinetic energy q2, and
the set of eigenvalues is (q2, 0, 0). This value q2 is dis-
patched among the three eigenvalues when statistical av-
eraging holds. The maximum dispatching is obtained in
the isotropic case with the three eigenvalues equal to
q2/3.

More generally, the so-called POD decomposition, or
analysis in principal components revisited by John Lum-
ley in fluid mechanics, gives a systematic ranking of
eigenvalues s2

1 > s2
2 · · · > s2

N . For instance, a very in-
teresting study of turbulence in rotating discs was per-
formed by Aubry et al. [1], in which ai represent a set
of scalar velocity components at different discrete radial
positions, ai ∼ v(ri). In this case, the rapid decrease
of the spectrum of eigenvalues characterizes an optimal
ranking of the most energetic structures. It is possible
to define an entropy, which is zero in the determinis-
tic case, with all the energy concentrated on the single
nonzero eigenvalue, and increases in term of less peaked
distribution of the spectrum of eigenvalues. Maximum
entropy is found at equipartition, when all the eigenval-
ues are equal. In our oversimplified example, total energy

is E = (1/2)a·a, E = (1/2)
∑N

n+1 s2
n and the “entropy”

is

H = −
1

ln N

N∑

n=1

pn ln pn, with pn =
s2

n

2E
.

Deterministic (dyadic) case and equidistribution corre-
spond to H = 0 (minimum) and H = 1 respectively.
Note that the high concentration of total energy in terms
of a little number of decreasing eigenvalues in various pod
analyses is not a characteristic of increasing (statistical)

inhomogeneity in the flow, as often said, but more gen-
erally a characteristic of decreasing randomness. Going
back to the Reynolds stress tensor, isotropy is related to
maximum randomness, whereas the strong dominance of
a single eigenvalue reflects a dominant deterministic ef-
fect. This is shown with kinetic energy concentrated on
the streamwise component of the RST in a — highly non-
homogeneous — wall-bounded flow, but a similar effect
is obtained from the sole effect of the mean shear in the
quasi-deterministic rapid distortion context.

3 Revisiting the structure of
homogeneous turbulence, via
the second-order spectral
tensor

3.1 Second-order statistics, continuous
and discrete formulation

We will now consider the most general two-point and
single-point second-order statistics. All this information
derives in physical space from the correlation tensor

Rij(r) = 〈ui(x)uj(x + r)〉, (4)

which only depends on the separation vector r assuming
statistical homogeneity. Its 3D Fourier transform gives
the second-order spectral tensor

R̂ij(k) =
1

(2π)3

∫∫∫ ∞

−∞

Rij(r) exp(−ık·r)d3r, (5)

in the continuous case, and similarly in the discrete case,
using integrals over the periodic domain: The velocity
field is periodized in the three directions of space, so
that the components of the wave-vector are discretized
as

kn1 = n1(2π)/L1, kn2 = n2(2π)/L2, kn3 = n3(2π)/L3,

with n1, n2, n3 a set of relative integers.
Of course, the same information is included in R and

R̂, but the latter presents a simpler structure due to the
algebraic form of the divergence-free constraint in 3D
Fourier space. Using the reduced rank of the velocity
vector in Fourier space, the spectral tensor is shown to
be rank-2 using

〈û∗i (p)ûj(k)〉 = R̂ij(k)δ3(k − p), (6)

and kiûi(k) = 0. Using, e.g., DNS, the discrete counter-
part of the preceding equation is

〈û∗i (km)ûj(kn)〉 = R̂ij(kn)δnm

L1L2L3

(2π)3
, (7)

with often L1 = L2 = L3 = L. We prefer not use the
conventional short-hand notation L = 2π of DNS, in
order to display the correct dimension for both the Dirac
delta ‘function’ in (6) and the prefactor (L/(2π))3 in (7).

From the most general definition of the spectral ten-
sor, Hermitian definite-positive, with kiR̂ij = R̂ijkj = 0
(incompressibility from kiûi = 0), is found its explicit
rank-2 form:

R̂ =

(
e−ℜZ ℑZ + ıH 0
ℑZ − ıH e + ℜZ 0

0 0 0

)
=

(
e−H Z 0

Z∗ e +H 0
0 0 0

)
.

(8)
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The first expression is found in the orthonormal Craya-
Herring frame of reference (e(1), e(2), e(3)), so that the
third line and the third column correspond to the direc-
tion of k, along e(3) = k/k. The reduced non-zero contri-
bution in the plane normal to k is generated by four real
scalar terms, the 3D spectrum of energy e(k) = (1/2)R̂ii,
depending on the full vector k in arbitrary anisotropic
flow, the 3D helicity spectrum kH(k) = ıknǫnijR̂ij , and

the polarization term Z = (1/2)R̂ijN∗
i N∗

j . The last term
is complex-valued and appears in a more intrinsic form
in the second expression in (8), using the frame of helical
modes (N = e(2)− ıe(1), N∗ = e(2) + ıe(1), e(3)) derived
from the Craya-Herring frame [3, 24]. It is clear that its
modulus | Z | is invariant to any change of orthonormal
frame of reference, as e and H are.

The exact splitting of the spectral tensor in terms of
four contributions, a purely isotropic one (iso), a con-
tribution from directional anisotropy (dir), a contribu-
tion from polarization anisotropy (pol) and a contribu-
tion from helicity (hel) comes from a trace-deviator de-
composition but restricted to the plane normal to k, so
that

R̂ij =
E(k)

4πk2
Pij(k)

︸ ︷︷ ︸
R̂(iso)

+

(
e(k)−

E(k)

4πk2

)
Pij(k)

︸ ︷︷ ︸
R̂(dir)

+ℜ (Z(k)Ni(k)Nj(k))︸ ︷︷ ︸
R̂(pol)

+ ıǫijn

kn

k
H(k)

︸ ︷︷ ︸
R̂(hel)

. (9)

Without looking at the detail of the helical base,

the decomposition is completely intrinsic with R̂
(iso)
ij +

R̂
(dir)
ij = (1/2)R̂nnPij , R̂

(pol)
ij = ℜ(R̂ij − (1/2)R̂nnPij)

and R̂
(hel)
ij = ıℑ(R̂ij−(1/2)R̂nnPij), using the projection

operator Pij = δij−kikj/k2 = ℜ(N∗
i Nj). This above de-

composition is reflected in any two-point, in physical and
in Fourier space, or single-point statistical descriptor.

Due to the reduced rank-2 form of the spectral tensor,
diagonalisation is very easy to perform, with two nonzero
(in general) positive eigenvalues given by the trace and
the determinant of the non-zero part of the matrix in
(8): s2

1 + s2
2 = 2e, s2

1s2
2 = e2− | Z |2 −H2. Accordingly,

s2
1 = e +

√
| Z |2 +H2, s2

2 = e−
√
| Z |2 +H2. (10)

A general realisability condition is found as

e ≥
√
| Z |2 +H2. (11)

3.2 Conventional DNS started with a
single realization

It is important to point out that conventional pseudo-
spectral DNS started with a single realisation, even using
— a unique — random set of phases, give no access to
the statistical definition of R̂, but only to its dyadic form

R̂DNS
ij (kn1n2n3) = û

∗
i (kn1n2n3)ûj(kn1n2n3)

(2π)3

L1L2L3
,

so that further statistical averaging can be only obtained
by spatial or temporal averaging.

What happens if the spectral tensor is dyadic, in
the absence of effective statistical averaging, as in DNS

started with a single realisation ? The nonzero part re-
duces to (

u(1)∗u(1) u(1)∗u(2)

u(1)u(2)∗ u(2)∗u(2)

)
,

(e.g. using the nonzero, poloidal-toroidal-type, compo-
nents of û in the Craya-Herring frame,) so that the de-
terminant, which gives the product of eigenvalues, with
sum equal to the trace, is zero. Accordingly, the pre-
ceding inequality for realizability becomes an equality,
e =

√
| Z |2 +H2 and the only nonzero eigenvalue is 2e,

as in our more general model problem in POD carica-
ture, section 2. In this case, the eigenvector related to
the eigenvalue 2e is the velocity vector in Fourier space
û, the second eigenvector attached to the zero eigenvalue
e −

√
| Z |2 +H2 is, said, e(3) × û, and the third eigen-

vector is e(3), or k by virtue of incompressibility.
A more realistic randomness can be obtained in KS

following [6].
Of course, this does not solve one of the main drawback

of KS: Gaussian statistics is favoured, at least for the
velocity field and probably for their increments.

4 Restoring cubic correlations
in the dynamics of two-point
second-order statistics

In conventional isotropic turbulence, it is clear that all
information for two-point and single-point second-order
statistics is given by the energy spectrum E(k). It is well
known that very different types of velocity realizations
can have the same spectrum. For instance, a realistic
‘turbulent’ realization, with tube-like vortex structures,
e.g. [12], is turned into an unstructured one, by multiply-
ing the individual velocity Fourier modes by uncorrelated
phases, or

û(k) → û(k)eıφk . (12)

Of course, the realistic turbulent field and the ‘phase-
randomized’ one have the same energy spectrum, accord-
ing to (6) and (9) (first term).

From a dynamical viewpoint, the role of the nonlinear
spectral transfer term in creating, or restoring, phase
coherence, is essential, from the basic Lin equation

∂E

∂t
+ 2νk2E = T. (13)

T (k, t) is mediated by cubic velocity correlations and re-
flects the cascade process. Its triadic structure follows
from the exact derivation of (13) from

∂û

∂t
+ νk2û + Pω̂ × u = 0, (14)

in which ω is the vorticity fluctuation, and .̂.. denotes
Fourier transform. Accordingly, the transfer term re-
sults from spherically averaging a contribution from
〈ûi(k)ω̂n(p)ûm(q)〉, with k + p + q = 0 using the ex-
pression of the Fourier transform of the Lamb vector in
(14) as a convolution product. The third-order tradic
tensor Simn(k, p, t) resulting from

〈ûi(k)ûm(p)ûn(q)〉 = Simn(k, p)δ3(k + p + q), (15)

is eventually called into play in the integrand of T (k),
using the velocity Fourier modes only, via ω̂(k) = ık ×
û(k).
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In pseudo-spectral DNS, for decaying isotropic tur-
bulence, conventional initialization prescribes a narrow-
band energy spectrum with an initial realization of the
velocity field such that

u(1) ∼

√
E(k)

4πk2
cos αkeıφk , u(2) ∼

√
E(k)

4πk2
sin αkeıφk ,

(16)
in agreement with Craya and Rogallo. With simple
choice of ‘translative’ phases φk and ‘rotative’ ones αk,
rediscussed below, the initial field is not skewed, as for a
Gaussian distribution, and contains no structure. A real-
istic velocity field with tube-like vortex structures, how-
ever, can emerge via nonlinear evolution. This evolution
is consistent with creation of inertial spectrum and spec-
tal transfer for a skewed velocity field. This behaviour is
obtained by directly solving the Lin equation (13), with
T (k, t) given by a robust ‘triadic’ closure, e.g. EDQNM-
type [21]. In contrast with DNS, EDQNM has no limita-
tion in term of Reynolds number, allowing recent results
on finite-Reynolds number effects [27] and prediction of
two-point and single-point skewness factors.

4.1 The best example: decaying
homogeneous rotating turbulence

Phase coherence is essential in rapidly rotating turbu-
lence, which reduces to inertial wave turbulence at low
Rossby number. The effect of the Coriolis force is im-
mediately accounted for by replacing ω in (14) by the
absolute vorticity 2Ω + ω, in which Ω is the angular ve-
locity of the rotating frame. Because the basis of the he-
lical modes is convenient for both the rotating (they are
eigenmodes of the linear regime) and the non- rotating
case (they diagonalize the Curl operator), the velocity
field in Fourier space is expressed as

û(k, t) = a+(k, t)eıσktN(k) + a−(k, t)e−ıσktN(−k),
(17)

which displays the dispersion law of inertial waves

σk = 2Ω·k/k = 2Ωk‖/k, with k =| k | . (18)

The linear regime of inertial waves is immediately re-
covered in replacing the slow amplitudes as, s = ±1
by constant terms, related to initial data at t = 0.
The regime of weak nonlinearity for wave turbulence
theory corresponds to a multiscale time separation be-
tween ‘rapid’ phases and ‘slow’ amplitudes, leading to
as(k, t) → as(k, ǫt) with ǫ really a small parameter of
the order of the Rossby number. On the other hand, if
nothing is specified on the time dependency of as in (17,
18), arbitrary nonlinearity, and arbitrary Rossby number
from 0 to infinite (no rotation) can be accommodated:
One just define from (17) the most convenient set of vari-
ables, as, s = ±1 to study rotating turbulence.

Injecting (17) into (14) (with ω → ω + 2Ω), an exact,
purely nonlinear equation for as is derived as

(
∂

∂t
+ νk2

)
as(k, t), s = ±1

=
∑

s′,s′′=±1

∫∫∫

k+p+q=0

exp

(
2ıΩt

(
s

k‖

k
+ s′

p‖

p
+ s′′

q‖

q

))

×Mss′s′′(k, p)a∗s′(p, t)a∗s′′(q, t)d3p. (19)

Without rotation, Ω = 0, the typical tradic phase term
in the exponential is zero, and one recovers the alterna-
tive of basic Navier-Stokes equations using helical Fourier

modes, with the purely geometric ‘tradic’ factor Mss′s′′

specified in [3], Waleffe (1990, 1993) and [24]. In the
presence of rotation, the classical triadic interaction is
weighted by the exponential term, often refered to as
the resonance operator. It is clear that the linear regime
(first line of eq. (19) is favoured by this phase term,
which damps the nonlinearity in general by tradic phase-
mixing. Significant nonlinearity can survive at small Ωt,
but at very large Ωt, it is strongly reduced by phase-
mixing and eventually, (small) nonlinearity is restricted
to resonant triads, those for which the phase is almost
zero in the exponential term.

Accordingly, eqs. (17) and (19) help understanding the
limit of inertial wave turbulence (see [24] and the recent
review of wave turbulence theory by Newell [20]) but here
their use is more general, for any Rossby number, and at
any time.

As for the basic dynamical equation, from (14) to (19),
it is possible to derive a set of generalized Lin equation
for the set (e, Z,H) for arbitrary anisotropic, homoge-
neous rotating turbulence, as

(
∂

∂t
+ 2νk2

)
e(k, t) = T (e)(k, t), (20)

and similar ones for the polarization term and the helicity
spectrum [3, 4, 24]. We have now all the basic formalism
to discuss the role of coherent phases in homogeneous
rotating turbulence, as follows.

• Exact phase cancellation result from homogeneity
looking at two-point second-order correlations. The
absence of a typical Coriolis effect on the energy
equation, in the linear regime, is not exactly due to
the cancellation of a translative phase, as in (12),
because the phase terms are twice (plus and minus)
in (17) and they will affect a rotative phase instead.
For instance, the linear regime is found, starting
from Craya / Rogallo initialization (16) by chang-
ing αk into αk + σkt. Anyway, phase cancellation
is recovered looking at energy modes, prportional
to (1/2)û∗·û, also equal to (1/2)(a∗+a+ + a∗−a−),
whose e(k, t) is the ensemble average.

• Looking at the energy equation, a crucial Corio-
lis effect alters only the transfer term T (e) in (20).
This effect is responsible for the alteration of the
dynamics by rotation. it reduces the interscale en-
ergy transfer in average by triadic phase mixing, as
the triadic phase term does in (19), resulting in a
reduced dissipation rate. Because of the anisotropic
structure of the phase term in (19), isotropy, if ini-
tially stated, is broken, so that a angle-dependent
energy spectrum is dynamically created, but slaved
to the spectral transfer term. Anisotropic shape of
the energy spectrum, e(k, k‖/k) or e(k‖, k⊥), is con-
sistent with axisymmetry without mirror symmetry,
and compatible with an incomplete, or saturated,
two-dimensionalization.

4.2 Quasi-static MHD : a toy model with
linear forcing of two-dimensional
structure

Two-dimensionalization by the sole effect of the Cori-
olis force remains an open problem in decaying ho-
mogeneous turbulence. On the other hand, complete
two-dimensionalization can be achieved in quasi-static
magnetohydrodynamics (QSMHD), and new insights are
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found contrasting homogeneous rotating turbulence and
homogeneous QSMHD.

The QSMHD case is sufficiently simple to be discon-
nected from the complex coupling of Navier-Stokes and
induction equation for the magnetic field, present in
MHD. At very small magnetic Prandtl number, e.g. in a
liquid metal, under strong external magnetic field, Alfvén
waves are inhibited, and the fluctuating magnetic field is
enslaved to the velocity field in such a way that it can
be removed from consideration.

The basic equation replacing (14), and replacing the
one in a rotating frame is
(

∂

∂t
+ νk2

)
û + M2

0

(
k‖

k

)2

û + Pω̂ × u = 0. (21)

May I ask to the reader, at this stage, to forget all about
MHD, such as the relationship of the parameter M0 with
the external magnetic field and the physical meaning of
the related term with Ohmic dissipation ? Equation (21)
will be considered from now on as a basic Navier-Stokes
equation with additional linear term, leading to force
two-dimensional structure.

Starting from isotropic turbulence, in which all direc-
tions of the wavevector are populated with the same den-
sity of energy, the linear term will selectively damp ve-
locity contributions with inclined wavevectors, so that it
will tend to concentrate the spectral density of turbu-
lent kinetic energy towards purely transverse wavevec-
tors k‖ ∼ 0. Of course, k‖ = 0 characterizes the two-
dimensional manifold, or the contribution of modes in
which the axial variability ∂/∂x‖ is removed by integra-
tion in physical space. The fully nonlinear equations are
consistent with axisymmetry with mirror symmetry, so
that all two-point second-order statistics derive from the
previously mentioned energy spectrum e(k‖, k⊥, t) and
from its polarization term Z(k‖, k⊥, t). Governing equa-
tions derive from (21) as
(

∂

∂t
+ 2νk2 + 2M2

0

(
k‖

k

)2
)

e(k, t) = T (e)(k, t), (22)

and
(

∂

∂t
+ 2νk2 + 2M2

0

(
k‖

k

)2
)

Z(k, t) = T (Z)(k, t). (23)

In this case, because of the mirror symmetry, the
complex-valued polarization term Z is real, and e and
Z are given by the sum and the difference, respectively,
of the two eigenvalues, s2

1 and s2
2 of the spectral tensor

R̂.
Pseudo-spectral DNS were used for solving eq. (21),

with axisymmetry used for evaluating directly e and Z,
by averaging on sectors in Fourier space around both
k and its polar angle with respect to the axial direc-
tion, or cos θk = k⊥/k: This gives simultaneously the
ring-to-ring and shell-to-shell spectral distribution. The
same information was obtained by directly solving eqs.
(22, 23), in which T (e) and T (z) are closed by a dedi-
cated, fully axisymmetric, EDQNM model. All statisti-
cal quantity, two-point as well as single-point, is derived
from this information. Details of both approaches, with
cross-fertilization, are given in [9].

4.2.1 Linear inviscid regime, as in Rapid
Distortion Theory

This regime is well known since the pioneering study
of Keith Moffatt (1967). Exponentially growthing

anisotropic structure is found from the linear — with
T (e,Z) = 0 — solution of (22,23). All related second-
order statistics are analytically derived, combining alge-
braic and Erf functions.

Three-dimensional isotropic initial data are given by
e = E(k, 0)/(4πk2)and Z = 0. Z remains zero, whereas
e concentrates towards its 2D limit, or

e(k⊥, k‖) =
E(k,∞)

2πk
δ(k‖), Z = 0

Typical asymptotic anisotropic ratios are found for the
Reynolds stress tensor and the vorticity tensor as

〈u2
‖〉

〈u2
⊥〉

= 2,
〈ω2
‖〉

〈ω2
⊥〉

= 2.

At least the first result is counter-intuitive. Initially,
the Reynolds stress is spherical (3D isotropic), with
〈u2

‖〉

〈u2
⊥
〉

= 1, and this ratio increases monotonically from

1 to 2. The explanation comes from the divergence-
free constraint, which means orthogonality of the Fourier
mode and the wavevector. Accordingly, a relative deple-
tion of energy around axial wavevectors means a deple-
tion of energy in the transverse direction. More physi-
cally, a 2D-3C (two-dimensional, three-component) state
is reached, so that 2D — i.e. without axial variability —
are favoured, but they consist of both vortical structures
— with vertical vorticity and no vertical velocity — and
‘jettal’ structures, with only vertical, up-and-down, ve-
locity (and horizontal vorticity). Accordingly, e − Z at
k‖ = 0 quantifies vortical 2D structures, whereas e − Z
at k‖ = 0 quantifies jettal 2D structures. Other statis-
tical indicators are the integral length scales with axial
separation, related to either axial velocity components

L
(‖)
‖ or to transverse velocity components L

(‖)
⊥ .

4.2.2 The nonlinear regime in a subsequent step

Some characteristics of the linear regime are qualitatively
present, but the new element is the rise of polarization
near the two-dimensional manifold, due to a very spe-
cific behaviour of T (e) and T (z) in (22, 23). In short,
energy is concentrated near the 2D manfold, in a first
phase where the linear effect is dominant. After this
first phase, the linear term becomes less and less active,
because it is zero at k‖ = 0, and the nonlinear dynamics
is essential. This nonlinear dynamics is very close to a
2D-2C cascade for the transverse mode e − Z, cascade
mediated by T (e)−T [z), with a conventional inverse cas-
cade for energy with reduced dissipation. On the other
hand, the mode e + Z for ‘jettal axial energy’ behaves
as the spectrum of a passive scalar affected by 2D-2C
turbulence: direct cascade and eventual dissipation. All
our results from DNS and axisymmetric EDQNM are
consistent for confirming this scenario, which is reflected

on all derived statistical indicators: The RST ratio
〈u2

‖〉

〈u2
⊥
〉

begins to increase (linear) but eventually decreases after
a maximum towards a zero value (nonlinear polarization
with selected damping of ‘jettal’ 2D energy. Instead of
the Reynolds stress tensor, the 2D energy components,

2〈u2
⊥〉L

(‖)
⊥ and 〈u2

‖〉L
(‖)
‖ are precise indicators of the po-

larization near the 2D manifold. Their difference is zero
in the linear regime, so that its significant value means
a large polarization induced by nonlinearity.

8 ERCOFTAC Bulletin 92



4.3 Rotating shear : SLT versus fully
nonlinear dynamics

Setting aside other interactions, including coupled fields,
such as passive and active (buoyancy) scalars in strati-
fied turbulence, e.g. [11], active vector (magnetic field)
in MHD, our last example deals with sheared turbulence
in a rotating frame. Considering a mean flow with space-
uniform velocity gradients Aij , possibly seen in a rotat-
ing frame, our basic dynamical equation is now

˙̂u + νk2û + Mû + PFT [(2Ω + ω)× u] = 0, (24)

in which the ‘overhat’ for Fourier transform previously
used is replaced by FT [...], better for long arguments.

In agreement with spectral linear theory (SLT), the
overdot denotes time-derivation following the character-
istic lines given by the eikonal equation

k̇i + Ajikj = 0, (25)

so that the wavevector is considered as time dependent.
This is equivalent to follow the mean flow trajectories in
physical space, given by

ẋi −Aijxi︸ ︷︷ ︸
〈Ui〉

= 0. (26)

As for the nonlinear term, use of a projection operator
allows to account for the pressure term, which is enslaved
to the solenoidal constraint. Accordingly the linear term
generated by the effect of the mean flow, via A is exact
and reduces to a matrix M which depends only on A

and on the direction of the wavevector (details in [24]).
The case of the rotating shear flow was recently revis-

ited in [25], for a refined analysis of both linear terms,
using SLT, and nonlinear terms using pseudo-spectral
DNS in deformed coordinates (Rogallo 1981).

In contrast with purely rotating flows, the second-
order statistics, generated by e, Z,H, are not enslaved
to nonlinear spectral transfer terms, but competition be-
tween purely linear terms and transfer terms is possible.
As a single example, the equation for the 3D spectrum
of energy is written as

ė + 2νk2e +
k̇

k
e + ℜ ([N ·A·N ] Z)

︸ ︷︷ ︸
exact linear part from e and Z

= T (e) (27)

Complete equations for the full set (e, Z,H) are de-
rived and discussed in [7] as well, but with almost ex-
clusive emphasis on cubic correlations, and the triadic
structure of T e,Z,H derived from eq. (15).

5 Conclusions and perspectives

Phase coherence is essential in the dynamical and struc-
tural approach to turbulence. If it is partially lost look-
ing at two-point second-order velocity correlations, but
an important contribution is restored at the level of
three-point third-order correlations, which quantify the
interscale energy cascade. Identified in a general POD
decomposition, this issue remains relevant for quasi-
homogeneous turbulence, working in Fourier space, es-
pecially for strongly anisotropic flow cases.

On the one hand, artificial phase-randomization is use-
ful to create random realizations from prescribed second-
order statistics. Incorporation of artificial random tem-
poral frequencies, from basic KS, is not discussed here

(see [10] and its generalisation in [6]), so that our atten-
tion is restricted to ‘translmative’ and ‘rotative’ phase
terms, which give an optimal spatial randomization fol-
lowing Craya and Rogallo, in eq. (16). Of course,
in the absence of artificial temporal frequencies, phase-
randomization is a similar problem in KS and in DNS
initialization. We should say few words on the more
general way to generalize KS to fully anisotropic ho-
mogeneous flows. The most general information on
second-order statistics is given by prescribing the com-
plete (e(k), Z(k),H(k)) set with dependence on both ori-
entation and modulus of the wave-vector. The best pro-
cedure is found by randomly choosing the whole wave-
vector, with a probability directly connected to e(k). In-
stead of incorporating the random phases into u(1) and
u(2) components, as in eq. (16), they are introduced into
the helical mode components, or a+ and a− at t = 0 in
eq. (17), in a way which maintains the following exact
relationship

e ∝ 〈a∗+a+ + a∗−a−〉,

H ∝ 〈a∗+a+ − a∗−a−〉,

Z ∝ 2〈a∗+a−〉.

As a first promising application, one can reproduce real-
izations of helical anisotropic flows more realistic than,
e.g., the forcing of a deterministic ABC helical flow by
Mininni, Pouquet and coworkers. In addition, this gives
an alternative to the dyadic spectral tensor obtained by
DNS from a single realization of initial data (our anal-
ysis in sections 2 and 3.) As a second application, it
is possible to use in KS, for various calculations includ-
ing Lagrangian statistics from trajectories, a set (e, Z,H)
which results from fully nonlinear calculation, especially
when their anisotropic structure is enslaved to the set
(T (e), T (z), T (H)), which include realistic phase coher-
ence, via generalized Lin equations, such as in eqs. (13,
20, 22, 27) here.

Of course, the dynamical creation of phase coher-
ence in third-order three-point correlations is outside the
scope of KS; this is illustrated here by sohisticated triadic
closures and full DNS. It is possible, however, to incor-
porate purely linear dynamics in KS, by retaining the
purely linear inviscid part in eq. (24). This was done in
rotating, stably-stratified, flows in [5]. To render a syn-
thetic model of turbulence consistent with ‘Rapid Distor-
tion Theory’ for each realization, in mimicking globally
some nonlinear behaviour, is an important theme in this
bulletin issue. In this context, some models were pro-
posed by the Kassinos’s group (e.g. [13]), but one of
the more advanced strategy is by Sharath Girimaji in
the present theme issue. This strategy, combining both
method and madness, as recently jokingly said by the
author, consists of replacing the nonlinear term in eq.
(24) by a ad-hoc Langevin stochastic term, and to add a
stochastic contribution to the eikonal eq. (25).

The last point calls into play an essential role of KS,
hardly discussed here: to provide synthetic trajectories
xi = x̃i(X, t, t0) from the synthetic velocity field in or-
der to calculate Lagrangian statistics. From this view-
point, the eikonal equation reflects in Fourier space the
mean flow trajectory equation (26), which corresponds to
Dx̃i/Dt = 〈Ui〉, whereas KS can give acces to ‘turbulent’
trajectories given by

Dx̃i/Dt = 〈Ui〉(x) + ui(x, t).

A possible interpretation of the stochastic part of the
Eikonal equation follows, but this is possibly redundant
with the use of KS to derive the turbulent trajectories.
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Abstract

By definition, Manufactured turbulence(MT) is pur-
ported to mimic physical turbulence rather than model
it. The MT equations are constrained to be simple to
solve and provide an inexpensive surrogate to Navier-
Stokes based Direct Numerical Simulations (DNS) for
use in engineering applications or theoretical analyses.
In this article, we investigate one approach in which the
linear inviscid aspects of MT are derived from a lin-
ear approximation of the Navier-Stokes equations while
the non-linear and viscous physics are approximated via
stochastic modeling. The ensuing Langevin MT equa-
tions are used to compute planar, quadratic turbulent
flows. While much work needs to be done, the prelimi-
nary results appear promising.

1 Introduction

Turbulence is an enigmatic mix of method (large scale
coherent structures) and madness (chaotic, small scale
motions). While the coherent structures are evidently
flow-dependent, the small-scale chaotic motions exhibit
a rather surprising level of independence from the large
scales (Kolmogorov hypotheses). Arguably, it is the large
scale structures that are dynamically important and the
role of the small scale motions is merely to provide a
means for dissipating the cascaded energy. It is rather
interesting that the dynamically decisive large scales are
easier to compute and more difficult to model than the
small scales which are more onerous to compute but play
a more straightforward role. Any attempt at capturing
turbulence physics must pay heed to these crucial mat-
ters.

Our charge in this work is to develop simple-to-solve
equations that mimic physical turbulence, rather than
model it. Here we reserve the term model to indicate
those attempts to develop closure equations for the mo-
ments of the turbulence field. To mimic is to yield spatio-
temporal realizations of velocity and pressure fields and
entire probability distribution functions. We call such a
surrogate flow field, Manufactured Turbulence(MT). The
MT flow-field is intended for use in engineering applica-
tions and theoretical analyses as an inexpensive substi-
tute to the Direct Numerical Simulations (DNS) of the
Navier-Stokes equations.

In the absence of an analytical theory of turbulence,
the computational recourse to turbulence is extensively
utilized in industrial and academic applications. Of
these, computationally intensive methods like Direct Nu-
merical Simulation and Large Eddy Simulation are lim-
ited in their application due to their excessive computa-
tional demands. On the other hand, modeling intensive
approaches, such as one or two equation models, are en-
cumbered due to their lack of fidelity in many varieties
of flows. In this vein, synthetic or manufactured tur-
bulence is a contrivance to generate signals that mimic

real turbulent flow fields. Kinematic Simulation (KS) is
predominantly used to this end.

An alternative that is popular in the turbulent com-
bustion community is based on the Langevin equation in
a Lagrangian framework. Such Probability Density Func-
tion methods have been extensively applied and have be-
come established in turbulence research ([1, 2]). This
work is based, in essence, upon extensions of the sim-
plistic analogy between the motion of fluid elements in a
turbulent flow and the motion of gas molecules. Chung
([3]) used a similar analogy with the motion of fluid el-
ements and Brownian motion, to develop a simplified
statistical model for turbulence. Kuznetsov and Frost
([4]) applied a consonant similitude to use a Langevin
equation for this purpose. This was extended by Pope
and co workers ([5]). In an analogy with the Langevin
equation governing the velocity of a particle undergoing
Brownian motion, a linear Markov model for fluid parti-
cle velocity was developed in [5]. The effects of fluctuat-
ing pressure and viscosity are modeled via deterministic
drift and diffusion terms. The diffusion term represents
a random walk in velocity space. Haworth and Pope ([5])
used the Navier Stokes equation as the starting point for
the model formulation, thus adding physical significance
to the terms of the Langevin equation and the concomi-
tant coefficients therein. Furthermore, to account for the
rapid component of pressure (and specifically, its depen-
dence on mean gradients) an anisotropic drift term was
added to the generic Langevin equation.

In this article, we apply a general set of Langevin
equations to generate Manufactured Turbulence. It is
accepted that linear physics provides a qualitative repre-
sentation for many features of turbulent flows. However,
the exactitude of this linear representation is contingent
upon many factors. It is found that the quantitative pre-
ponderance of linear theory is highly dependent on the
regime of flow. This is explained with respect to the
nature of the instabilities manifested in these flows.

2 Mathematical formulation and

rationale

The essential components of a turbulent flow field consist
of:

1. Linear effects, consisting of inertial physics, embod-
ied in production and rapid pressure action.

2. Non-linear effects, that include the slow pressure ac-
tion.

3. Viscous effects.

Of these, the linear effects are the drivers of turbulence
and engender the variations in different flows. Thus, it is
essential to ensure that these are represented as precisely
as possible. The non-linear effects are universal and can
be modeled statistically.
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Based on physics, pressure action can be decomposed
into two components, viz. rapid and slow.

1

ρ
∇2p′ = −2

∂Ui

xj

∂uj

xi

− ∂2

∂xi∂xj

(uiuj − uiuj), (1)

where the first and second terms on the right, represent
the contributions of rapid and slow pressure, respectively.
The adjectives rapid and slow refer to the components of
pressure arising, respectively, from the linear and non-
linear parts of the source term in the Poisson equation
for pressure. The slow component acts to conserve the
incompressibility of the velocity field generated by the
nonlinear interactions among velocity fluctuations. Sim-
ilarly, it is the function of rapid pressure to impose the
divergence free condition on the fluctuating velocity field
produced by linear interactions between the mean and
fluctuating fields.

Based on established theory, surrogates for the linear
and the non-linear effects of pressure can be developed
separately. Thence, these can be appended to give a
complete, general surrogate for the pressure effects. In
contrast to the slow pressure and its universal nature,
the action of the rapid pressure effects are a strong func-
tion of the mean velocity field and initial flow conditions.
In spite of the apparent simplification afforded by linear-
ity, the action of rapid pressure is not straightforward.
Depending on the nature of the mean velocity field and
initial conditions of the flow field, the effect of the rapid
pressure component can be diametric. Furthermore, this
action can alter the fundamental nature of the flow. This
is best exhibited in the regime of elliptic flows, where
it is established that the rapid pressure effects initiate
and sustain the elliptic flow instability ([6]). Most engi-
neering models do not capture the nature of this action
and predict a decay of turbulence, contrary to theory
and DNS results ([7]). Thus, the linear pressure effects
must be represented as accurately as possible. The im-
port of fidelity to linear dynamics, even in KS has been
accepted and attempts have been made to coalesce the
knowledge developed via RDT in KS. Nicolleau and Vas-
silicos ([8]) utilized temporal evolution predicted by RDT
with the KS velocity field formalism. This was applied
and compared contra DNS in [9]. Kaneda and Ishida
([10]) used a similar approach to study the diffusion of
a passive scalar. Subsequently, this approach of amalga-
mating RDT with KS has been extended, for instance in
[11]. Under the aegis of RDT, the velocity field can be
expressed as a summation of advected Fourier modes. In
this formulation, the rapid pressure effects can be repre-
sented exactly. To this end, the rapid pressure compo-
nent of the Langevin set is formulated in spectral space.
In spectral space, this formulation can account for the
initial conditions accurately and is not hampered by an
incomplete basis. The germane equations in this regard
are:

dκl

dt
= −κj

∂Uj

∂xl

, (2)

duj

dt
= −uk

∂Ul

∂xk

(δjl − 2
κjκl

κ2
), (3)

and the incompressibility constraint is given by u ·κ = 0.
Herein, ~u and ~κ, or the Fourier velocity amplitude and
wave-vector respectively, are considered random vari-
ables and are simulated via Monte Carlo techniques.

With regard to the slow component of pressure, it
is established that this has a return to isotropy effect,
wherein, the anisotropy of the Reynolds stress tensor is
reduced. This, in essence, is a redistribution of the tur-
bulent kinetic energy from any given distribution to an

uniform, isotropic distribution. Thus, the slow pressure
effects are represented via a stochastic diffusion form.
Explicitly,

Aij(u, e)dWj , (4)

where Aij is the diffusion tensor and dW is an isotropic
Wiener process. Consequently, the representation re-
duces to

dei = gi(u, e) + Aij(u, e)dWj + Bij(u, e)dW ′

j . (5)

dui = hi(u, e) + Hij(u, e)dWj + Gij(u, e)dW ′

j . (6)

Constraints are applied to the system to ensure physical
fidelity. These are:

1. Ensure that ~e remains a unit vector.

2. Maintain orthogonality of ~u and ~e.

3. The PDF of the velocity approaches an isotropic,
joint-normal distribution.

4. The evolution of the turbulent kinetic energy is ex-
act in the limit of decaying turbulence.

These ensure realizability of the Reynolds stresses. For
details of the derivation, the reader is referred to [12].
The velocity evolution equation is represented as a
Langevin equation with an anisotropic drift term. Such
surrogates can be thought of as bridging methods be-
tween one-point closures and multi-point/spectral clo-
sures.

The dissipation model is appended to the formulation
to complete the basis. This is of the established form:

dǫ

dt
=

ǫ2

k
(C1

P

ǫ
− C2). (7)

Consequently, the entire set of equations reduces to:
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(9)

Figure 1 exhibits the representation’s performance,
wherein the predictions are compared against DNS re-
sults ([12]).

3 Linear physics in planar,

quadratic flows

Linear theories such as RDT ignore the interaction of
turbulence with itself. This is justified via assumptions
regarding the times scales (of mean and fluctuating dis-
tortions), a weak turbulence assumption, etc. However,
the linear instabilities manifested in RDT obviate these
assumptions. With increase in the turbulent kinetic en-
ergy, the non-linear effects become more important and
thus, linear theory cannot suffice, beyond a very limited
time period. In this duration, the linear effects structure
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Figure 1: Comparison of the predictions against DNS
results

Figure 2: The unstable modes exhibited, with respect to
their alignment in (a) a representative hyperbolic flow,
(b) in an elliptic flow

Figure 3: The evolution of (a) the turbulent kinetic en-
ergy, (b) Reynolds stress anisotropies in a plane strain
flow, under the aegis of the Rapid Distortion Limit

the flow field. Thence, non-linear effects modify the evo-
lution of turbulence. This structuring effect of the linear
physics is most evident in the instabilities manifested
therein, where certain modes are engendered to grow
preferentially. Figure 2 exhibits the unstable modes, in
a representative hyperbolic and an elliptic flow, with re-
spect to their alignment. The figure is motivated by
a congruous illustration in [13]. As can be observed,
the unstable modes in an elliptic flow form a continuous
band. However, the unstable modes in a hyperbolic flow
lie on a set of zero measure. In the hyperbolic case, all
other modes are either stable or can undergo some tran-
sient growth. Furthermore, this state of alignment for
the unstable modes is in itself unstable and these can be
forced off this alignment by any perturbations. This is
evident in Figure 3, wherein the hyperbolic flow insta-
bility is arrested by the pressure effects. This occurs via
the transfer of turbulent kinetic energy out of the plane
of applied shear via the pressure strain correlation. The
interested reader is referred to [14], wherein the linear
aspects of this problem are analyzed in detail. It is ob-
served that this shift is robust and manifests itself for
all open streamline flows, as exhibited in Figure 4. In
this vein, it is pertinent to question the exactitude of the
hyperbolic instability, caused by these modes, in regimes
where the non-linear effects become more and more sig-
nificant. Furthermore, this is contrasted against similar
comparisons in other regimes of planar, quadratic flows.

The structuring effects of linear physics are most pre-

dominant in purely sheared flows. This is evident the
large streamwise length scales observed in boundary lay-
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Figure 4: The evolution of (a) the turbulent kinetic en-
ergy, (b) Reynolds stress anisotropies in a representative
open streamline flow, under the aegis of the Rapid Dis-
tortion Limit

ers. Furthermore, it has been observed that the evolution
of flow statistics is similar in DNS studies, as compared
to RDT simulations ([15]). This is exhibited in Figure
5, where the results of the Langevin equation representa-
tion are compared to those from RDT based simulations.

Figure 6. compares the evolution of flow statistics for
elliptic flows in the presence and absence of non-linear
effects. As can be observed, the results are very similar
in the absence of non-linear effects or when they are of
a small finite value. This is due to the finite measure
of the set of unstable modes. However, this scenario
does not persist for all elliptic flows. For instance, in
purely rotating flows, it is known that linear theory is
inconsistent with DNS results ([15]).

Figure 7. compares the evolution of flow statistics in
a representative hyperbolic flow as the non-linear effects
become more important. It is observed that due to the
non-linear effects, the switch in the anisotropy evolution
occurs progressively earlier. This is due to the pertur-
bation of the wave-vector due to the non-linear effects,
which force modes off the unstable set.

4 Conclusions

In this article, we exhibit the application of Manufac-
tured Turbulence (MT) to study the linear physics in a
planar quadratic flow. The MT equations are exact in
the Rapid Distortion Limit and use a Langevin equa-

Figure 5: Comparison of the evolution of Reynolds stress
anisotropies in a purely sheared flow (a) RDT results, (b)
Langevin representation with Sk

ǫ
= 25

Figure 6: Comparison of the evolution of Reynolds stress
anisotropies in a representative elliptic flow (a) RDT re-
sults, (b) Langevin representation with Sk

ǫ
= 50
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Figure 7: Comparison of the evolution of Reynolds stress
anisotropies in a representative hyperbolic flow (a) RDT
results, (b) Langevin representation with Sk

ǫ
= 80, (c)

Langevin representation with Sk
ǫ

= 60

tion to simulate the return to isotropy effect of the slow
pressure term. Thus, chaotic advection is incorporated
using a white noise term. The mathematical formulation
of such representations is introduced and the underlying
rationale explained.

Thence, this surrogate is applied to study the import
of linear physics for planar, quadratic flows. It is found
that for purely sheared flows, linear theory provides a
very good representation of the evolution of flow statis-
tics, even in the presence of non-linear effects. For gen-
eral elliptic flows, effects of linear physics are predomi-
nant even in the presence of moderate non-linearity. This
is due to the banded nature of the instability, where un-
stable modes lie on a continuous band of finite measure.
Thus, perturbations due to the non-linear effects have
very little influence on the instability. However, for hy-
perbolic flows, the linearly unstable modes lie on a set of
very small measure. Thus perturbations to these modal
alignments may have significant effects on the state of
instability and consequently, the evolution of flow statis-
tics. However, only the transient time to reach the
asymptotic stage is affected. But the final asymptotic

behavior is still as dictated by linear phenomenon. It
is observed that linear effects dominate the overall flow
behavior, although non-linear aspects can have an im-
portant effect on transients.
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Abstract

The multi-scale turnover Lagrangian map (MTLM) has
recently been proposed as a way to generate synthetic
turbulent fields. Several studies show that the synthetic
fields reproduce remarkably well many of the small scale
statistics, including anomalous scaling for the velocity
increments and the coarse-grained turbulent energy dis-
sipation fields. The results inspire further investigation
of the method. In this paper, we look into the statistics
related to the subgrid-scale stress in the filtered veloc-
ity fields generated by the MTLM, and generalize the
method so that both energy and helicity spectra can be
enforced simultaneously. We observe that the MTLM
fields reproduce the plateaus in the scale dependence of
the mean subgrid-scale dissipations in the inertial ranges,
implying energy and helicity cascades are generated by
the MTLM procedure, although the values are somewhat
underestimated. The geometrical statistics also show
good agreement. Some discrepancies are observed, which
can be traced back to the known fact that the MTLM
fields are lacking concentrated vortex tubes.

1 Introduction

Synthetic turbulence has been devised as a simplified
model to understand aspects of turbulent flow fields.
Kinematic simulations have been used widely in the
study of particle dispersion (see, e.g. [1, 2]). Other
synthetic fields have also been proposed in the inquiry
of material deformation and small scale intermittency
[3, 4]. On the practical side, realistic synthetic fields
have been an important component for the successful
simulations of certain turbulent flows, where the initial
and/or upstream conditions have significant effects on
the later evolution of the flow. The multi-scale turnover
Lagrangian map (MTLM) is proposed in [5] where the
velocity field is generated by recursive use of a simple La-
grangian map, while maintaining the prescribed energy
spectrum. A related method, the minimal multi-scale
Lagrangian map (MMLM) is also proposed by the same
authors [6]. The latter differs from the former in the
way the mapping is iterated. The results show that the
two methods are able to generate synthetic fields that
reproduce many statistics of the small scales of hydrody-
namic turbulence, such as the statistics of the vorticity
and the strain rate tensor, including geometrical statis-
tics such as the geometry of the strain rate tensor and
its alignment with the vorticity. Besides, the velocity
increments and the coarse-grained energy dissipation in
the MTLM fields also possess anomalous scaling, with
scaling exponents in close agreement with the realistic
values [5]. The synthetic velocity fields generated using

these methods have been used as the initial conditions
for large eddy simulations (LES). It is shown that con-
siderable time can be saved as lengthy ‘pre-simulation’
is no longer needed, and that the evolution of decaying
turbulence is more realistically reproduced [6].

This paper is motivated by the interesting properties
of the MTLM and MMLM fields. The purpose is two-
fold. First of all, we intend further looking into the inter-
scale interaction in the synthetic fields in this paper. On
the other hand, we generalize the methods to consider
stationary helical isotropic turbulence, where a constant
helicity spectrum is imposed. We will use filtering to sep-
arate the velocity field into resolved scales and sub-grid
scales (SGSs), and examine the inter-scale interactions
through the statistics of the SGS stress, including the
SGS energy dissipation and SGS helicity dissipation. We
aim at, first, checking if the methods generate realistic
helical statistics, and second, gaining understanding to
the inter-scale interaction in Navier-Stokes (NS) turbu-
lence through the comparison with the synthetic fields.

2 Helicity and helical turbulence

Helicity h = u · ω, where u is the velocity and ω =
∇ × u is the vorticity, is a quadratic invariant of the
inviscid NS equation. It has been observed in DNS
that a Kolmogorov-type helicity spectrum establishes in
isotropic helical turbulence with constant helicity input.
Let H(k) be the helicity spectrum at wavenumber k, such
that 〈h〉 =

∫
∞

0
H(k)dk. In the inertial range, it is pro-

posed in [7] that H(k) should be

H(k) = cHηǫ−1/3k−5/3, (1)

where cH is a constant, and found to be approximately
1.0 by DNS [8]. η is the helicity dissipation rate, and ǫ
the energy dissipation rate.

The nonlinear inter-scale interaction in helical turbu-
lence can be studied using the filtering method. Let
G∆(x) be a filter kernel with ∆ being the filter length,
the filtered velocity ũ(x, t) is the convolution between
G∆(x) and the velocity field u(x, t), i.e., ũ(x, t) ≡
[G∆ ∗ u](x, t). The filtered velocity ũi satisfies the fil-
tered Navier-Stokes (NS) equations:

Dtũi = −∂ip̃ + ∂j(−τij) + ν∇2ũi + f̃i, (2)

where τij = ũiuj − ũiũj is the subgrid-scale (SGS) stress

and f̃i is the forcing term. The SGS stress represents
the effects of the SGS scales on the resolved scales. The
parametrization of τij is crucial in simulation techniques
such as large eddy simulations.
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The effects of τij are multi-facet, but one important
aspect is the energy flux through the filter scale gener-
ated by τij , which is defined as

ΠE = −τijS̃ij , (3)

where S̃ij = (∂iũj + ∂j ũi)/2 is the filtered strain rate
tensor. ΠE is a sink term in the equation for the kinetic
energy of the resolved scales ũiũi/2, and is commonly
called the SGS energy dissipation.

For helical turbulence, the helicity flux across the filter
scale characterizes another aspects of the inter-scale in-
teraction. From the filtered NS equation, one can derive
the balance equation for the resolved helicity h∆ = ũ · ω̃,
where ω̃ is the filtered vorticity. An crucial contribution
to the balance of h∆ is the SGS helicity dissipation

ΠH = −2τijR̃ij , (4)

where R̃ij = (∂iω̃j + ∂jω̃i)/2. The SGS helicity dissipa-
tion represents the helicity flux crossing the filter scale.

3 The Multi-scale Turnover La-
grangian Map

The MTLM is motivated in part by the simple dynam-
ical system found in [9] (see also [10]). The dynamical
system describes the velocity and scalar increments over
a fixed distance on a material line element. The model
highlights the effects of the nonlinear interactions of the
increments, whereas only part of the effects of the pres-
sure is accounted for. Numerical solutions show that
a range of observations regarding the non-Gaussian be-
haviours of the increments are reproduced qualitatively
by the model. Noting that the nonlinear interaction be-
tween the increments essentially arises from the ballistic
relative motions between the particles, the MTLM model
is developed. We briefly recap the MTLM below, and
shows how to maintain the helicity spectrum during the
recursive use of the mapping.

The main building block of the MTLM method is the
Riemann equation

∂tu + (u · ∇)u = 0

which describes the motion of a fluid particle if the inter-
particle interactions are completely neglected. The solu-
tion is u(x, t) = u(a, 0) where a is the initial location
of the fluid particle which locates at x at time t. Thus,
from the Lagrangian point of view

x(t) = a + tu(a, 0),

and the dynamics is reduced to a linear map L : a → x

(the minimal Lagrangian map [6]), which maps the ini-
tial Gaussian random velocity field to a distorted, non-
Gaussian field. In the MTLM method, the map is ap-
plied recursively, at increasingly finer grids. The incom-
pressibility condition is re-enforced after each mapping
by projection onto the divergence-free sub-space. Then,
the velocity field is re-scaled, so that the energy spectrum
will return to the initial one (usually the Kolmogorov
−5/3 spectrum in the inertial range with certain empir-
ical functional form in the dissipation range). In other
words, at each iteration, a mapping-projection-rescaling
three-step procedure is performed. This procedure is
first applied to a coarse-grained velocity obtained by low-
pass filtering the initial Gaussian velocity field. After the

three-step procedure is applied, the distorted field is as-
sembled with the high wavenumber components of the
original Gaussian field, to which the next iteration ap-
plies. The new iteration repeats the above procedure but
with a finer grid. The iterations are repeated until the
last one which is applied to the whole velocity field.

For more details about the MTLM procedure, the
readers are referred to [6, 5]. For the data in this pa-
per, the MTLM is applied to a 2563 uniform grid in the
domain [0, 2π]3. 6 iterations are used, with resolutions
83, 163, 323, 643, 1283, and 2563, respectively.

We have generalized the MTLM procedure to helical
turbulence. For helical turbulence, we have to maintain
the helicity spectrum in each iteration. This is accom-
plished using the helical wave decomposition of the ve-
locity field, as briefly explained below. Given the Fourier
components û(k) of the velocity field, it can be decom-
posed into the sum of two helical waves h+ and h− [11]:

û(k) = a+(k)h+(k) + a−(k)h−(k). (5)

According to the properties of the helical waves, the vor-
ticity field is given by

ω̂(k) = k(a+h+ − a−h−). (6)

At the rescaling stage of the MTLM procedure, we in-
troduce two functions f+(k) and f−(k), and define the
rescaled velocity as

ûs(k) = f+a+(k)h+(k) + f−a−(k, t)h−(k). (7)

As a consequence,

ω̂(k) = k(f+a+h+ − f−a−h−) (8)

By definition, the energy and helicity spectra are E(k) =
(1/2)

∮
û
∗

s ·ûsdSk, and H(k) =
∮
ω̂∗s ·ûsdSk, respectively,

where Sk is a spherical shell in the Fourier space with
radius k. Hence one finds:

E(k) =
1

2

[
|f+|2

∮
|a+|2dSk + |f−|2

∮
|a−|2dSk

]
(9)

H(k) = k

[
|f+|2

∮
|a+|2dSk − |f−|2

∮
|a−|2dSk

]
(10)

Given the original velocity field û, one can find the helical
wave components a+(k) and a−(k), and hence calculate
the integrals in the above equations. With E(k) and
H(k) prescribed either as analytical functions or from
DNS data, f+(k) and f−(k) can then be solved from the
above two equations. With f−(k) and f+(k) found this
way, the velocity field ûs have the prescribed energy and
helicity spectra.

4 Results and discussion

4.1 Parameters of the velocity fields

To generate the DNS data sets, we solve the Navier-
Stokes equations using the pseudo-spectral method in a
periodic [0, 2π]3 box. Statistically stationarity is main-
tained by a forcing term that injects energy and helicity
into the flow field at constant rates ǫf = 0.1 and ηf = 0.3,
respectively. The details of the forcing term, in partic-
ular the method to inject helicity, are explained in [12].
The energy and helicity spectra are plotted in Fig. 1.
A short −5/3 range is observed in both the energy and
helicity spectra.

The energy and helicity spectra of the DNS data are
used as the input for the MTLM synthetic fields. Five
MTLM fields are generated, with same spectra and pa-
rameters but different realizations of initial Gaussian
fields. The statistics are averaged over the five fields.
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Figure 1: The energy and helicity spectra of the DNS
data

4.2 SGS energy and helicity dissipation
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Figure 2: The mean SGS energy and helicity dissipation
rates at different filter scales

Fig. 2 shows the mean SGS energy and helicity dissi-
pation rates as functions of filter scales. The lines with-
out symbols are DNS results. For turbulence with infi-
nite Reynolds number, the SGS dissipation rates reach
constant values in the inertial ranges and equal the in-
jection rates (0.1 for energy and 0.3 for helicity). For the
data in this paper, the DNS results reach approximate
plateaus. The plateau values, however, are smaller than
the injection rates due to the small Reynolds number. In-
terestingly, the results calculated from the MTLM fields
also approach approximate constant values, although the
values are somewhat smaller than the DNS values. Thus,
it appears that the MTLM procedure can account for
most of the energy flux as well as the helicity flux across
the spectra. Note that, as is shown in [13], SGS helicity
dissipation is generated when the resolved vortex tubes
with non-uniform diameter are twisted. The above re-
sults show that the MTLM procedure can capture, at
least partially, such subtle effects.

The probability density functions (PDFs) for the SGS
dissipation rates are compared in Fig. 3. The DNS
results show the well-known features. The PDF for
ΠE shows strong positive skewness as well as signif-
icant probability for negative fluctuations, i.e., back-
scattering. The PDF for ΠH is more intermittent than
that for ΠE . The MTLM results, shown with symbols,
reproduce all the features of the DNS results, although
it also shows that the MTLM results underestimate to
some degree the intermittency of the SGS dissipations.

Fig. 4 plots the conditionally averaged SGS energy
dissipation for both the DNS and MTLM fields. For the
dissipation conditioned on the magnitude of the strain
rate tensor, MTLM shows reasonable agreement with

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

-24 -20 -16 -12 -8 -4  0  4  8  12  16  20  24

P
D
F

(ΠE,H − <ΠE,H>)/σE,H

Figure 3: PDFs of normalized SGS helicity and energy
dissipations. Solid line: ΠE for DNS; squares: ΠE

for MTLM; dashed line: ΠH for DNS; circles: ΠH for
MTLM. ∆ = 16δx
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DNS values. For large strain rates MTLM overestimates
the results, at the order of or smaller than 10%. As
for the results conditional on vorticity, the SGS energy
dissipation in DNS shows only weak dependence on the
magnitude of vorticity, whereas the energy dissipation in
the MTLM fields increases slowly with the magnitude of
vorticity. This discrepancy is consistent with the known
properties of the MTLM fields. It has been found in
[6] and [5] that the MTLM fields appear to be missing
concentrated vortex filaments at small scales, compared
with DNS data. Rather, the small scales are populated
by vortex sheets, where strong vorticity and strain rate
coincide. The stronger correlation between vorticity and
strain rate generates the somewhat overestimated corre-
lation between the vorticity and the SGS energy dissipa-
tion shown in Fig. 4.

4.3 Geometrical statistics

We first look into the shape of the SGS stress ten-
sor. Let (−τ)α, (−τ)β and (−τ)γ be the eigenvalues
of the deviatoric part of the (minus) SGS tensor −τd

ij ≡
−τij + (τkk/3)δij , such that (−τ)α ≥ (−τ)β ≥ (−τ)γ

and (−τ)α +(−τ)β +(−τ)γ = 0. The shape of the stress
tensor is described by the factor

s∗τ ≡
−3
√

6(−τ)α(−τ)β(−τ)γ

[(−τ)2
α + (−τ)2

β + (−τ)2
γ ]3/2

. (11)

s∗τ = 1 corresponds to an eigenvalue ratio of (−τ)α :
(−τ)β : (−τ)γ = 2 : −1 : −1, hence the stress −τd

ij tends
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to have an axisymmetric state where resolved eddies are
stretched in one direction and contracted axisymmetri-
cally in the other two directions. The PDFs for s∗τ are
shown in Fig. 5. The DNS result reproduces the strong
peak at s∗τ = 1, which has been known since, e.g., [14].
The PDF for the MTLM field again also shows a strong
peak at s∗τ = 1, in close resemblance to the DNS results.
The peak is somewhat stronger than the DNS result.
The difference suggests that the preferential alignment
is stronger in vortex sheets.

Non-trivial alignment configurations have been ob-
served between the SGS stress tensor, the vorticity ω̃,

and the stress tensor S̃ij as well as other quantities.
The alignment between the vorticity vector ω̃ and the
eigenvectors of the SGS stress −τij is shown in Figure
6, where (−τ )α, (−τ )β and (−τ )γ are the eigenvectors.
As is observed in DNS [15], there is a strong tendency
for vorticity to align with the most extensive eigenvec-
tor (−τ )α or the intermediate eigenvector (−τ )β of −τij ,
and alignment with the former is stronger than that with
the latter. Meanwhile, ω̃ tends to be perpendicular to
the third eigenvector. These features are all reproduced
by the DNS results in Fig. 6. The MTLM results com-
pare well with the DNS results, although the alignment
with the intermediate eigenvector appears to be stronger
than that with the most extensive one. As is suggested
in [14], the alignment between ω̃ and (−τ )α comes from
the contributions of strong concentrated vorticity. This
explanation is consistent with the observation in Fig. 6
and the fact that MTLM fields contain insufficient vortex
filaments.

Figure 7: The angles describing the relative orientation

of the eigen-frames of −τij and S̃ij

Figure 8: The joint PDF of (cos θ, φ, ζ) for the eigen-

frames of S̃ij and −τij in the DNS data. ∆ = 16δx

We next examine the alignment between −τij and the

filtered strain rate tensor S̃ij . To describe the relative
alignment between two tensors, we used the three an-
gles θ, φ, and ζ defined in Fig. 7 [14]. Sα, Sβ and

Sγ in the figure are the eigenvectors of S̃ij , correspond-
ing to eigenvalues Sα ≥ Sβ ≥ Sγ . For a Gaussian ran-
dom field, the joint PDF of cos θ, φ and ζ is roughly
uniform. Thus deviation from the uniform distribu-
tion indicates non-trivial geometrical structures in the
DNS/MTLM fields. Fig. 8 and Fig. 9 plot the re-
sults for the DNS data and MTLM fields, respectively.
The PDF for the MTLM fields has two peaks, with a
value 4.16 at (cos θ, φ, ζ) ≈ (0.75, π/2, 0), and a value
1.22 at approximately (0., 0., 0.71). The correspond-
ing angles (θ, φ, ζ) are approximately (41◦, 90◦, 0◦), and
(90◦, 0◦, 41◦), which we will call configuration A and B
respectively. The double-peak structure has been ob-
served before in experiments and numerical simulations
[14] and [15], and also in our DNS results shown in Fig.
8. For DNS data, the locations of the peaks are at ap-
proximately (cos θ, φ, ζ) = (0.78, π/2, 0), with peak value
2.34, and (0., 0., 0.76), with peak value 1.65. In terms of
the angles, the locations are (θ, φ, ζ) = (39◦, 90◦, 0), and
(90◦, 0◦, 44◦). Therefore, the preferential configurations
for the alignment in the MTLM fields are the same as
those in the DNS fields. However, the probabilities to
observe the configurations are somewhat different. The
MTLM fields have a much higher probability to observe
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Figure 9: The joint PDF of (cos θ, φ, ζ) for the eigen-

frames of S̃ij and −τij in the MTLM fields. ∆ = 16δx

configuration A (4.16 compared with 2.34), whereas the
probability for configuration B is slightly smaller than
that in the DNS fields (1.22 versus 1.65). The differ-
ence again can be related to the lack of vortex tubes or
filaments in MTLM fields. As is shown in [14], the con-
figuration B is more probable in high vorticity region,
which can be plausibly explained in terms of the stretch-
ing of strong vortex tubes. Thus it is not surprising that
MTLM fields has a smaller probability to observe con-
figuration B. On the other hand, the stronger peak for
configuration A in MTLM fields does not have an expla-
nation yet. Nevertheless, we observe that difference in
Figs. 8 and 9 is consistent with the results in Fig. 6. As
is commented in [15], configuration A in the joint PDF is
observed when ω aligns with βτ , whereas configuration
B is observed when ω aligns with ατ . Fig. 6 shows that
in MTLM field it is more probable for ω to align with
βτ , and hence more probable to observe configuration A
in the joint PDF as well.

Figure 10: The joint PDF of (cos θ, φ, ζ) for the eigen-

frames of R̃ij and −τij in the DNS data. ∆ = 16δx

A non-trivial alignment between R̃ij and −τij is re-
ported in [13], in which the intermediate eigenvector
Rβ aligns with (−τ )γ and simultaneously (−τ )α makes
a 45◦ angle with Rα (the eigenvector corresponding
to the largest eigenvalue Rα). The alignment is an-
other signature of the structure of turbulent vorticity
fields. The DNS result is plotted in Fig. 10 for com-

Figure 11: The joint PDF of (cos θ, φ, ζ) for the eigen-

frames of R̃ij and −τij in the MTLM fields. ∆ = 16δx

pleteness. The peak in the joint PDF corresponds to
the peak described above. The MTLM result is shown
in Fig. 11. Interestingly, the peak is now shifted to
(cos θ, φ, ζ) = (1, π/2, π/2) and corresponds to a config-
uration where Rα and Rβ simultaneously aligns with
(−τ )α and (−τ )γ , respectively. The difference indicates

that R̃ij gives more detailed description of the vortic-
ity field, so that the differences in the MTLM and DNS
fields are captured in the joint PDF.

5 Conclusions

We present a study on the synthetic turbulent fields
generated by the multi-scale turnover Lagrangian map
in comparison with hydrodynamic turbulence generated
by direction numerical simulations. We look into the
statistics of the MTLM fields related to the subgrid-scale
stresses, and generalize the method to consider helical
turbulence. We observe that MTLM-generated synthetic
fields reproduce many of the statistics to good approx-
imations. The MTLM fields reproduce approximately
constant positive mean subgrid-scale energy and helic-
ity dissipation rates in the inertial ranges, even though
the values are somewhat underestimated. Geometrical
statistics are also reproduced, with some small quantita-
tive difference. The analysis demonstrate that the simple
MTLM procedure can account for the essential features
of inter-scale interaction in helical turbulence. The dif-
ferences between MTLM and DNS give some hints on
the the effects of the different structures (such as vortex
sheets and vortex tubes) in turbulent fields.
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Singularities in the Particle Concentration Field of

Inertial Particles in Turbulent Flows
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1 Introduction

There have been numerous studies devoted to the seg-
regation of particles/droplets in turbulent flows, given
its relevance in many environmental and industrial pro-
cesses (warm rain initiation, [1], and the formation and
growth of PM10 particulates in the atmosphere being
just two of a multitude of examples). The early studies
of segregation showed it to be a maximum when St ∼ 1,
St being the particle Stokes number defined as the ratio
of particle response time to the time scale of the small
scales of the turbulence. Along with this went the now
traditional view that depending upon St, particles are
centrifuged out of regions of high vorticity into the high
strain regions in between (e.g. [2], [3]). Since these early
studies, the problem has been addressed from a num-
ber of different perspectives which have not only added
insight but challenged this traditional picture of segre-
gation and the role of particle inertia. [4] and [5] have
demonstrated for instance that there exists a strong cor-
relation between the segregation of inertial particles and
the location of zero acceleration points in DNS of tur-
bulent flows when the Reynolds number is high. Simi-
larly, in Kinematic Simulations (KS) where the sweeping
of small scales by large scales do not exist, they have
suggested that heavy particles anti-cluster with zero ve-
locity points [4]. Recently, [6] proposed an alternative
viewpoint of segregation for St ≫ 1, involving the his-
tory of the particles’ compressibility and the accumula-
tion of high concentrations (singularities) within an en-
velope of caustics where particle trajectories cross one
another. The occurrence of crossing trajectories is also
an important feature of the recent studies of [7] and [8]
in which they partition the particle motion into a spa-
tially random uncorrelated motion (RUM) and a meso-
scopic motion derived from a smoothly varying particle
velocity field which is responsible for the spatially cor-
related part of the particle motion. By measuring the
spatial velocity correlation between pairs of particles,
they were able to calculate the contribution the RUM
and the mesoscopic velocity field make to the particle’s
turbulent kinetic energy, and how this varied with St.
Sling-shot events measured by [9, 10] and [11] are also
associated with singularities and RUM as they embody
the idea of a particle’s accumulated memory of many
encounters with turbulent structures similar to the in-
fluence of memory on compressibility. In these studies,
the authors use the indirect Lagrangian method (ILM),
which consists on tracking the evolution of the inverse
deformation tensor associated with the particle velocity
field along each particle trajectory, requiring the integra-
tion of the particle velocity gradient tensor. In contrast
to the approach we present, their equations are explicitly
non-linear and the existence of singularities is inferred by
the change of sign of all the components of the velocity

tensor whenever this exceeds a certain threshold value.
In this paper, the Full Lagrangian Method (FLM) [12]
is exploited to measure the compressibility of an elemen-
tal volume of particles in Kinematic Simulations (KS)
of incompressible homogeneous isotropic turbulent flow.
In this study [13] we extend our previous KS study [14]
by examining in detail the statistics of the compressibil-
ity of the particle phase and the rate of occurrence of
singularities in the particle concentration field. In addi-
tion, we explore the relationships between intermittency
as reflected in the moments of the particles concentration
and the occurrence of RUM, with the aim of providing a
more complete understanding of the occurrence of both
features.

2 Physical-mathematical model

We consider a point-particle approach with the dispersed
particle phase described as a continuum. Under the as-
sumption that the density of the particle is much higher
than the density of the carrier flow, that is ρp/ρ ≫ 1,
and neglecting Brownian motion and any body force, the
equation of motion of heavy particles reduces to:

dx

dt
= v,

dv

dt
=

1

τp

(u− v) , (1)

where τp is the particle relaxation time defined as τp ≡
2a2

pρp/9νρ.

As previously mentioned (see [12], [15] and [16]), the
FLM is based upon the evaluation of the second order
deformation tensor Jij = ∂xi/∂x0j along the particle
trajectory defined by where x0 represents the position of
the centre of the infinitesimally small volume surround-
ing each particle at some initial time t = 0. The equa-
tions of motion of Jij are obtained by differentiating to
x0j so that :

dJij

dt
= J̇ij ,

d

dt
J̇ij =

1

τp

(

∂ui

∂xk
Jkj − J̇ij

)

. (2)

from which we calculate |J | = det(Jij). As in [14], we are
specifically interested in the compression C(t) = ln |J(t)|
and the rate of compression Ċ which we define as the com-
pressibility (noting its equivalence to the divergence of
the particle velocity field along a particle trajectory). |J |
can be used to calculate the long term average compress-
ibility

〈

Ċ(∞)
〉

. In addition, all the spatially averaged
moments of the particle number concentration n(x, t)
can be calculated by computing the particle average of
the moments of |J |, since it holds that nα = 〈|J |1−α〉,

where (·) refers to a volume average, 〈·〉 an ensemble av-
erage along all particle trajectories and α can be any real
number.
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Figure 1: PDF of C(t) for St = 0.5.

With KS, a ‘synthetic’ turbulent flow is created not
by solving the NS equations but representing the fluid
velocity field as a truncated Fourier series of N modes.
A turbulent velocity field is kinematically simulated in a
three-dimensional periodic box similar to e.g. [17], [18]
and [19]. The modes are chosen in such a way that the as-
sociated energy spectrum of the flow field approximates
the form originally proposed by [20]. In this work, the
number of modes is N = 200. All variables are made di-
mensionless using the typical wavenumber κ0[m−1], and
a typical velocity scale of the flow, u0[m/s].

The fluid velocity field can be written as:

u(x, t) =

N
∑

n=1

[

a
(n) × κ

(n)

|κ(n)|
cos

(

κ
(n) · x + ω(n)t

)

+
b

(n) × κ
(n)

|κ(n)|
sin

(

κ
(n) · x + ω(n)t

)

]

, (3)

with random coefficients a
(n) and b

(n), random
wavenumbers κ

(n), and random wave frequencies ω(n).
It is noted that ∇·u = 0, i.e. the flow is incompressible.
For details about how the random coefficients, random
wavenumbers and wave frequencies are constructed, see
[14].

3 Statistics of compression,
singularities and RUM

The probability density function (PDF) of the compres-
sion C ≡ ln |J | is calculated, i.e. P (C, t): Figure 1 shows
the time evolution of this distribution for St = 0.5. The
values assumed by the third and fourth moments around

the mean (respectively the skewness µ3/µ
3/2
2 , and the

kurtosis µ4/µ2
2 where µk denotes the k central moment)

are shown in the legend of the figure at three different
times t = 1, t = 10, and t = 25, indicating that as time
increases the distribution approaches a Gaussian with
negative mean. This result is confirmed by [21] who used
a method based on a Voronoï tessellation to calculate the
particle concentration and showed that the distribution
of Voronoï areas is log-normal.

It is worth noticing that this result is also true for
〈C〉 ≥ 0 and St ≥ Stc, where Stc is the critical St for
the flow field considered, below which the average com-
pressibility is negative and above which is positive. It is
believed that the explanation for Gaussianity is similar to
that for the occurrence of a Gaussian distribution of dis-
placements [22], with C′(t), the fluctuating value of C(t)
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Figure 2: Long term limit of the compression diffusion
coefficient, Dc(∞) as a function of St.

about its mean, being in the limit of t ≫ TĊ a summation
of changes ∆C′ in subintervals ∆t (TĊ ≪ ∆t ≪ t) which

are statistically independent of one another (where Ċ is
the time derivative of C(t) and TĊ is the integral timescale

of Ċ). The same argument would not apply to the com-
pressibility which is expected to be non-Gaussian. Note
that the occurrence of both positive and negative com-
pression is consistent with the remark that 〈C〉 ≥ 0 does
not imply that C ≥0 and vice versa.

The rate of increase in the width of P (C, t) defines a
compression diffusion coefficient

Dc(t) =
1

2

d

dt
〈C′2〉 =

〈

C′(t)Ċ′(t)
〉

(4)

where Ċ′(t) is the fluctuating component of Ċ(t) with
respect to its mean. For t ≫ TĊ for which Ċ′(t) is a
stationary random variable, Dc(t) approaches an asymp-
totic limit Dc(∞) given by

Dc(∞) =

∞
∫

0

ds
〈

Ċ′(0)Ċ′(s)
〉

=
〈

Ċ′2(∞)
〉

TĊ . (5)

Implicit in this finite limit for Dc(t) is that for t ≫ TĊ .

〈

C′2(t)
〉

→ 2Dc(∞)t (6)

This result together with the approach to Gaussianity
confirm what was suggested in [15] for simple random
flows, but now true also for more complex stationary
random flow velocity fields, namely that for t ≫ TĊ a
Gaussian diffusion process, i.e. convection with simple
gradient diffusion, accurately describes the dispersion of
C(t) as well as processes that depend on the m-th central
moments of C for m ≤ 4, thus P (C, t) is described by an
equation of the form:

∂P

∂t
+

〈

Ċ
〉 ∂P

∂C
= Dc(∞)

∂2P

∂C2
+ δ(C)δ(t). (7)

Dc(t) has been evaluated in the long term limit and is
shown in Figure 2 as a function of Stokes number St. It
can be seen that Dc(∞) is zero for St = 0 and has a
maximum when St ∼ 0.3 which as it turns out (within
statistical error) is the same value of St as that corre-
sponding to the maximum value of the net compression.
For St > 0.3, the diffusion coefficient decreases mono-
tonically to a constant value (∼ 0.05). The implication
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Figure 3: Standardised PDF of C(t) compared with
Gaussian trend, St = 0.5.

of Equation (7) in the long term is that convection dom-
inates over dispersion since

〈

C′2
〉1/2

〈C〉
=

(2Dc(∞)t)
1/2

〈

Ċ
〉

t
∼ t−1/2. (8)

In other words, as t → ∞ the compression would con-
tract to a precise value

〈

Ċ
〉

t. However this is true only
ignoring the influence of the tail of the distribution of
P (C) for C ≤ 0 since the results in Figure 3 suggests that

〈

C′2m
〉1/2m

〈C〉
∼ tβ (9)

with β > 0 for m > 2, in contrast with a Gaussian distri-
bution for which β = −1/2. The significant skewness to-
wards negative compression (segregation) indicates that
singularities in the flow are likely to play a significant
role in determining the statistics of the segregation in
these long term limits. In this regard Figure 3 shows
P (C, t) obtained at t = 25 (see Figure 3) computed with
106 particles and normalised to zero mean and unit vari-
ance in order to obtain a universal curve. A Gaussian
distribution is superimposed. Although the statistics in
the tails are insufficient to draw a positive conclusion,
it would appear that the deviation from Gaussianity is
more pronounced in the left tail (negative compression)
than in the right one. This would seem to indicate that
the reason for this behaviour is the occurrence of singu-
larities that only take place for 〈C〉 → −∞. In addition,
the decay towards zero of the tail seems to be follow-
ing an exponential function of the form Y = A exp(BX)
where x < 0, therefore diverting from a Gaussian which
decays parabolically.

The RUM component of the particle velocity is a mea-
sure of the decorrelation of the velocities of two nearby
particles. Following the approach proposed by [7], the
investigation is extended to the calculation of the meso-
scopic and RUM contribution this time not of the veloc-
ity but of the compression in order to give more insight
into the role that they individually play in the total dis-
tribution, especially in relation to the left negative tail,
as observed in Figure 3. This is obtained as follows. The
total domain is subdivided into q3

c = 803 cells, the tra-
jectories of 106 particles are tracked in time and after
several realisation of the flow the statistics are collected.
For time t = 30 in dimensionless units, the RUM contri-
bution is evaluated as:

Φ(xi|j) = C(xi|j)−

qj
∑

q−1

j

C(xi) (10)
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Figure 4: Comparison between mesoscopic and RUM
contributions of the compression for St = 1.

where xi|j is the position of the i-th particle found in-
side the j-th cell at the chosen time, and the subscript
j = 1...qc. In order to collect reliable results, cells are fil-
tered and only those with qj > 100 are considered. The
mesoscopic contribution is calculated as:

Ψ∗(j) =

qj
∑

i=1

C(xi)/qj − C (11)

with C denoting the particle averaged compression cal-
culated all over the domain. Since in Equation (10) the
RUM component is found as a function of the particle
position, while in Equation (11) the mesoscopic contri-
bution is evaluated per each cell, to make a sensible and
effective comparison among the two quantities Ψ(xi|j)
is calculated, which associates each particle with a cer-
tain value of Ψ∗(j), depending on the cell in which it
is located. As shown in Figure 4 for St = 1, both con-
tributions and their summation are compared with the
total distribution of C. All distributions are normalised
to zero mean and unit variance and rescaled to facili-
tate the comparison. Two important observations can
be made: firstly, the summation of the mesoscopic and
RUM component gives a curve collapsing on the PDF of
the compression as expected. Secondly, it is clear (within
statistical error) that the deviation from Gaussianity is
mainly due to the RUM contribution ultimately linking
it with the presence of singularities.

Singularities in the particle concentration field are in-
stantaneous events which cannot be identified with box
counting methods. The frequency of singularities is cal-
culated in this study as ωs = Ns/Nmax and represents
the ratio between the number of singularities per unit of
time Ns and the total number of particles Nmax. Each
singularity is counted every time there is a change of sign
in J(t): in this way, the detection of singularities does
not imply the use of a threshold which depends on the
Stokes number, in contrast to the other recent work (e.g.
Ducasse & Pumir, 2009). Figure 5 displays ωsτf as a
function of St (where τf ≡ u0κ0/Ku is a typical correla-
tion time of the flow, with Ku the Kubo number, u0 and
κ0 respectively a typical velocity scale and wavenumber
of the flow).

The frequency of singularities appears to be equal to
zero in the proximity of St = 0, increasing until it reaches
a maximum for St ∼ 1 and decreasing towards an equi-
librium value for St → 102. Simulation data are well
approximated by the curve y = A exp(−B/St)StC with
A = 5.62 × 10−5, B = 0.80 and C = −0.70. In the case
of [10] the blow-up frequency of sling events multiplied
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by the Kolmogorov timescale shows a dependence of the
form: St−2×exp(−A/St)× (B +CStc). Previously, [23]
have argued a dependence ∼ exp(−A/St).

In addition, the distribution of singularities is cal-
culated over a fixed interval of time respectively for
St = 0.5, St = 1, St = 5 as shown in Figure 6. Excluding
the influence of an initial transient, when no singulari-
ties are observed, each standardised curve representing
the PDF is well approximated by a Poisson distribution
that describes the probability of the occurrence of an
event (singularity) in a specified time span [0,△t] as
∼ λ△t = Λ; λ is the rate constant for the occurrence
of singularities. The Poisson process implies that start-
ing from some initial fully mixed equilibrium distribu-
tion, the decay in the number of particles that have not
experienced a singularity is ∼ exp(−λt).

4 Conclusions

We have shown that the distribution of the compression
deviates from a Gaussian curve, contrary to what usually
assumed (e.g. [21]). The reason for this deviation is the
occurrence of singularities, instantaneous events which
correspond to very large concentration (in theory infi-
nite) in the particle phase. By using the FLM, we have
measured their frequency and showed that their PDF ap-
proximates a Poisson distribution whose width depends

on St. We also found that singularities are ultimately
related to to the RUM component of the compression as
observed for St = 1.

For more details about this work see [13].
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Abstract

We present preliminary results using a simple synthetic
turbulent model (periodic Kinematic Simulation) to un-
derstand the evolution of clouds formed of laden parti-
cles. In particular, we analyse the relative role of inertia
and gravity in the long time geometrical structure of such
clouds. This study is limited to isotropic incompressible
flows.

1 Introduction

In most natural and industrial situations one may en-
counter, particles suspended in flows have a finite size
and a mass density different from that of the carrier
flow. Thought a statistical description of such inertial
particles in turbulent flow is of interest to engineering,
it remains a challenge for researchers to find the exact
parameters that affect the clustering of inertial particles
in the flow field. In this contribution, we concentrate on
two non-dimensional parameters, the Stokes number and
the drift parameter, to quantify the clustering pattern of
inertial particles.

The dynamics of such inertial particles is different from
tracers and they form clusters. Unlike the tracer, par-
ticles with size comparable to molecular scales, inertial
particles (like water drops in clouds) have finite size and
have a much higher mass-density that the surrounding
fluid. Thus while the former is passively advected by
the fluid, and its motion at any time mimics that of the
local fluid motion, the latter (inertial particle) may de-
correlate from the advecting fluid motion owing to its
inertia and gravity. This phenomenon is referred to in
literature either as inertial clustering or preferential con-
centration.

The classical picture is that clustering of inertial particles
in turbulence is the result of particles being centrifuged
out of regions of high fluid vorticity (highly rotating) as
a result of their inertia and thus preferentially concen-
trating in the regions of high strain. Evidence of inertial
particles preferentially concentrating in regions of low
vorticity and high strain is abundant [4].

Preferential concentrations (in the absence of gravity) of
inertial particle suspensions in turbulent flows was stud-
ied in [2]. The concentration process was related to parti-
cles trajectories in phase space. A critical Stokes number
was found above which the particles were space filling.

Kinematic Simulation has been heavily used to study
particle-pairs but there is already a significant amount
of work devoted to sets of more than two particles. In
[8] particle triangles and tetrahedrons were studied in

two-dimensional KS and comparisons were made with
experimental results. Triangles and tetrahedrons were
further investigated in three-dimensional turbulence in
[13] and for laden particles in [1].

Particles clouds have also been studied using KS. The
fractal dimension of fluid particle clouds was studied in
[12]. Segregation was investigated in [6] where collec-
tions of heavy and light small spherical particles initially
well mixed with each other, were subjected to inertia and
gravity. Kinematic simulation predicted that the turbu-
lence can segregate heavy and light falling particles and
leads to a well-defined segregation length scale.

The relation between stagnation points topology and the
clustering of inertial particles in turbulent flows was in-
vestigated in [3].

2 Kinematic Simulation

We use Kinematic Simulations, KS, as a particular kind
of synthetic turbulence models to study the preferen-
tial location of particles with inertia in the presence of
gravity. (See e.g. [11] for more information on KS and
synthetic turbulence models.)

The predetermined Eulerian field u(x, t) based on [5] for
incompressible isotropic turbulence is reduced to a trun-
cated Fourier series. Here it is modified to model a peri-
odic field, that is by contrast to [5], where one wavevector
is randomly chosen for each wavenumber, wavevectors
are deterministically chosen on a regular grid:

u(x, t) =
N
∑

i=1

N
∑

j=1

N
∑

l=1

aijl cos(kijl.x + ωijlt) (1)

+ bijl sin(kijl.x + ωijlt)

where N is the number of points in x, y and z direction,
aijl and bijl are decomposition coefficients correspond-
ing to the wave vector kijl, and ωijl is the unsteadiness
frequency. (In this paper ωijl = 0.)

2.1 Periodic KS

Unlike the classical KS where the wavenumber usually
follows a geometric progresssion; in our case, in order to
impose periodic conditions, the wave vector components
are distributed arithmetically. The flow is periodic in the
three directions x, y and z. Rather than having a random
wave vector for each wavenumber, the wave vectors are
generated as follows:

k =
2π

l

(

n1

n2

n3

)

(2)
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where (n1, n2, n3) ∈ [1, 2, ..., N ]3, so that the velocity
field is l-periodic along x, y and z.

The vectors aijl and bijl in equation (2) are by construc-
tion orthogonal to kijl with their amplitude chosen ac-
cording to a prescribed power law energy spectrum E(k).
This ensures that the synthetic flow is isotropic and in-
compressible.

2.2 Energy spectrum

The effect of absence of sweeping and the discrepancy be-
tween KS and Richardson theory has been discussed in
[16, 14]. Here our choice of discretisation for the periodic
box imposes a Reynolds number small enough to dis-
card any such effect. Furthermore, kinematic simulation
has been shown to be in a good agreement with labora-
tory experiments for statistics of multi-particle for Kol-
mogorov (−5/3) energy spectrum (see e.g. [15, 14, 8]).

This study is limited to the steady case (ωijl = 0) and
we use an energy spectrum which does not change with
time and has the following form:

E(k) =

{

Ck−5/3 kmin < k < kmax

0 otherwise
(3)

where C is a constant. The total kinetic energy, E, is
obtained by integrating the energy spectrum over the
total range of wave number as:

E =

∫ kmax

kmin

E(k)dk (4)

and the root mean square velocity, r.m.s., of the turbu-
lent fluctuations is calculated as:

u′ =

√

2

3

∫ kmax

kmin

E(k)dk (5)

The integral length scale of the isotropic turbulence is
defined as follows:

L =
3π

4

∫ kmax

kmin

k−1E(k)dk
∫ kmax

kmin

E(k)dk
(6)

The Kolmogorov length scale is defined as η = 2π/kmax.
The ratio between the integral and Kolmogorov length
scale is L/η = kmax/kmin which is used to determine
the inertial range and the associated Reynolds number:
Re = (L/η)4/3 = (kmax/kmin)4/3.
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Figure 1: Initial distribution of particles (t = 0)

3 Equation of motion of inertial
particle

The simplified equations we use for the motion of heavy
particles was derived by [9, 7] to study the motion in
two phase flows in turbulent flows. The equation for the
particle’s velocity V is:

dV

dt
=

u−V + Vd

τa
(7)

where τa is the aerodynamics response time and Vd =
τag the Stokes terminal fall velocity in still fluid or par-
ticle drift velocity. For the sake of convenience we intro-
duce two non-dimensional parameters, the drift param-
eter defined as the ratio of the particle’s drift velocity to
the turbulence velocity fluctuation rms value u′:

γ = Vd/u′ = τag/u′ (8)

and the Stokes number defined as the ratio of the parti-
cle’s inertial time to the turbulence characteristic time:

St = τau′/L (9)

where L is the turbulence integral length-scale.

Figure 2: Initial distribution of particles (t = 0)

3.1 Particles’ tracking

In order to understand better the structure of the KS
field and particularly its property in terms of particles’
clustering we release particles from a regular spatial dis-
tribution as shown in figure 1. The particles are then left
to evolve according to equation (7). Whenever a parti-
cle leaves the box it is re-injected in agreement with the
periodic pattern as illustrated in figure 2.

The cloud of particles is then left to evolve for a time long
enough for it to reach its asymptotic state. By asymp-
totic state we mean that the particles settle in a partic-
ular region of the periodic box. That asymptotic region,
if it exists, can be though of as a Lagrangian attractor.
This is where the particles will eventually go in our KS.
This ‘atttractor’ is different from the classical approach
of [2] which is done in phase space. The evolution of
the laden particles is studied for different pairs of Stokes
numbers and drift parameters.

First the cloud will evolve through a transition phase
until it reaches its asymptotic shape. So it is important
to allow for enough time for the particles to reach the
Lagragian attractor.

The evolution of the particles cloud in the turbulent flow
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Figure 3: Evolution of the particles cloud for St = 0.413 and a) γ = 0.586, b) γ = 0.598, c) γ = 0.689, d) γ = 5.745

is studied for different pairs of Stokes numbers and drift
parameters. For the present work the unsteadiness fre-
quency is set to zero and energy spectrum of the flow field
is also kept constant (non decaying turbulence). This
frees us from any issue about forcing.

4 Results

We plot the particle positions as in figure 3, we identify
tree main cases for the Lagrangian attractor shape:

i) one-dimensional structure,

ii) two-dimensional structure,

iii) no particular shape.

Case i) is illustrated in figure 3a. Case ii) is typically
abtained from i) when the gravity effect is important,
it is illustrated in figure 3d. In many cases interme-
diary shapes are observed, in-between one-dimensional
and two-dimensional, leading eventually to case iii).

In a systematic approach we divide the study into two
main cases:

i) the Stokes number is kept constant while the drift
parameter is varied (§ 4.1);

ii) the drift parameter is kept constant while the Stokes
number is altered (§ 4.2).

4.1 Effect of the variation of the drift
parameter at constant Stokes
number

A typical case is shown in figure 3 for St = 0.413 and
γ = 0.586 (a), 0.598 (b), 0.689 (c), 5.745 (d).

For the case we chose, we can observe a one-dimensional
structure (figure 3a) when the effect of gravity is small.
Keeping the Stokes number constant and increasing the
drift parameter, that is the gravity effect, it can be
noticed that the one-dimensional pattern thickens as
shown in figure 3b, leading to a ribbon-like shape. Fur-
ther increase in the drift parameter will change further
the topology of the particles clustering pattern reach-
ing eventually a two-dimensional structure. This two-
dimensional structure is clearly obtained by thickening
the cloud in the vertical direction as can be seen in fig-
ure 3d. The one-dimensional structure which forms the
basis of that two-dimensional layer seems to be depen-
dent on the pair Stokes number/drift parameter as it is
different in figure 3b and figure 3d.

This change from one-dimensional to two-dimensional
is quite sudden as the beginning of the process can be
clearly identified in figure 3b where the drift parameter
has just been increased by 2%.

However, The increase of the drift parameter should not
be thought of as only increasing the topological complex-
ity of the Lagrangian attractor and improving particle
mixing or preventing particle clustering. The case pre-
sented in figure 3c and d corresponds to the same Stokes
number as figure 3 a and b but this time increasing the
drift parameter (from 0.689 to 5.745) leads to a simpler
two-dimensional layered structure.
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Figure 4: Pattern of particle cluster with γ = 0.689 and a) St = 0.207 b) St = 0.413 c) St = 1.693

4.2 Effect of Stokes number on
particle clustering keeping drift
parameter constant

We can also look at the cloud evolution from the opposite
perspective that is keeping this time the drift parameter
constant and changing the Stokes parameter. Clustering
patterns of laden particles with different Stokes numbers
are shown in figure 4 for γ = 0.689 and St = 0.207 (a),
St = 0.413 (b), St = 1.693 (c).

In a similar way to the previous study we found that the
topology of the particle cluster changes with the Stokes
number. We start from the one-dimensional Lagrangian
attractor, figure 4a, and then increase the Stokes num-
ber. Increasing the Stokes number clearly destroys the
one-dimensional structure: the particles are more scat-
tered in figure 4b though they still tend to concentrate
along one dimensional curves. Increasing further the
Stokes number completely inhibits the one-dimensional
structure as can be seen in figure 4c.

5 Conclusion

In this study we tried to identify the preferential regions
of agglomeration of laden particles in a periodic Kine-
matic Simulation box. From these preliminary results,
we can conclude that the patterns of the inertial particles
clustering in the turbulent flow are strongly dependent
on the combination of Stokes number and drift param-
eter. Depending on the values of these parameters, the
particles can cluster on a geometry that can be clearly
one-dimensional, two-dimensional, or has no well-defined
integer dimension.

For relatively small values of γ and St, the cluster’s pat-
tern remains one dimensional. There is a value of St be-
yond which the cluster is not one dimensional anymore
even at small values of γ. This is consitent with the
results in [12] where the clouds was not one-dimensional
but reaches an asymptotic fractal dimension for fluid par-
ticles.

Further increases in γ and St change the one-dimensional
structure into a ‘thickening’ curve; leading first to a two-
dimensional pattern. There is a range for γ and St for
which particle clusters have no integer dimension.

In this contribution, we presented only qualitative re-
sults. Eventually, the aim of all this work is to quantify
the values of γ and St for laden particles associated to
a particular type of Lagrangian attractors. We will need
to develop a more refined characterisation of the attrac-
tor structure by using fractal dimension.

Because of its easiness of implementation and low com-
puting cost Kinematic Simulation allows for systematic
parametric studies. To understand better the particu-
larity of the KS synthetic Eulerian fiels the results need
comparison with other validated numerical simulation
techniques like Direct Numerical Simulation. Then we
hope to be able to relate our approach to the more fun-
damental work of [2] and beyond to the spectrum prop-
erties [10].
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Abstract

Some recent researches about the motion of heavy in-
ertial particles in two-dimensional vortical flows are re-
viewed. The occurrence of chaotic particle trajectories is
discussed in the case where the flow is unsteady. Particle
trapping by either points or limit-cycles is also analysed.
When both chaotic motion and trapping (by different
attractors) exist, inertial particles can have fractal basin
boundaries, leading to an unpredictable final destination.

1 Introduction

The motion of inertial particles in fluid flows is known to
be very complex in most cases, even if the flow is lami-
nar and unaffected by the particle loading. Though the
chaotic advection of inertia-free particles has been widely
investigated in the last decades (see for example the re-
view paper by Aref [1]), the complex behaviour of inertial
particles is much less understood (Cartwright et al. [2]).
Various mechanisms can cause complex particle trajec-
tories, like collisions or wake effects. For isolated low-
Reynolds number particles these effects are absent, and
the main cause of complexity is the spatial dependence
of the fluid velocity, which induces a changing hydrody-
namic force along the particle trajectory. If, in addition,
the particle response time is much smaller than flow time
scales (small Stokes number limit), then the velocity of
the inclusion is always close to the local fluid velocity,
but this does not imply fluid-like lagrangian dynamics.
Indeed, even if the slip velocity is small, the particle posi-
tion can significantly differ from fluid point trajectories.
Such particles can be observed to have a chaotic motion
within a chaotic flow (i.e. a laminar flow with chaotic
fluid points trajectories) [3]. Of course, chaotic parti-
cle motion within non-chaotic flows is widely met too
[4]. Also, because the dynamics of inertial particles is
dissipative, in contrast with fluid point dynamics in in-
compressible flows, one often observe that these objects
converge towards well-defined zones of the flow domain
[5].

This accumulation can sometime be surprising, like in
vortical flows where heavy particles are generally cen-
trifuged away from the vicinity of vortices. For ex-
ample, asymptotically stable equilibrium positions have
been found for heavy particles in a Burger vortex [6],
where the inward drag due to the axial stretching flow
balances the centrifugal force. Stable attracting equi-
librium points have also been found for low-Re aerosols
in isolated co-rotating point vortex pairs [7]. These at-
tracting points are fixed in the reference frame rotating
with the vortex pair, and correspond to an equilibrium
between the inward drag and the centrifugal force. They
have been shown to persist if vortices have different (non-
opposite) strengths [8], and also if the vortices move due
to the presence of a wall [9][10]. All these trapping points

exist until the particle Stokes number exceeds some crit-
ical value.

Attractors in the form of limit-cycles can also be found
in inertial particle dynamics. For heavy particles, such
limit cycles have been observed in two-dimensional cellu-
lar flows [11] [5], but also in counter-rotating point vor-
tices [8]. The criterion proposed recently by Haller &
Sapsis [12] is of great interest for the identification of
such limit cycles.

In the following sections, the complex motion of heavy
inertial particles in two simple and widely met potential
flow structures are discussed. The typical behaviours
presented in this introduction, namely chaotic motion
and trapping, will be illustrated. Some arguments sug-
gesting the existence of fractal basin boundaries will be
given.

2 Chaotic particle motion

We have investigated the sedimentation of heavy inertial
low-Re particles (e.g. aerosols) in the vicinity of a hori-
zontal fixed vortex (Fig. 1(a)). This is a classical configu-
ration which has already been used in the past to analyse
particles in turbulence [13]. The hydrodynamic force act-
ing on the inclusions has been taken to be a simple Stokes
drag, together with the gravity force. If the terminal par-
ticle velocity is of the order of the flow velocity, and if
the vortex intensity is time-periodic (due to some exter-
nal forcing), then one can check that particle trajectories
can be chaotic, as sketched in Fig. 1(a). This chaos is
due to the combined effect of differential rotation, which
stretches particle clouds, and of gravity, which makes
particle clouds drift downward when the vortex weak-
ens. A stretch-and-fold mechanism is therefore at work
here, leading to chaotic motion. Because gravity plays
a key role here, as the vertical drift prepares the cloud
to being folded when the vortex restarts, this sequence
has been called "stretch-sediment-and-fold". Clearly, this
happens only under appropriate conditions involving the
particle properties (terminal velocity, Stokes number St)
and the flow time scales. These conditions have been
derived [14], in the limit St ≪ 1, by writing that the
particle velocity is equal to the local fluid velocity plus
the terminal velocity, plus perturbations due to the fluid
acceleration. This, very classical, approach allowed us to
write the particle dynamics as a perturbed hamiltonian
system, the phase portrait of which is shown, to leading
order, in Fig. 2(a). It corresponds to sedimenting inertia-
free particles and contains a homoclinic cycle (solid line)
attached to a hyperbolic point H where the terminal ve-
locity balances the upward fluid velocity. When the sys-
tem is perturbed, due to both the particle inertia and
the flow unsteadiness, a homoclinic bifurcation can oc-
cur and a stochastic zone appears in the vicinity of the
homoclinic cycle. Particles sedimenting in the vicinity
of the cycle are therefore mixed temporarily within the
stochastic zone.
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Figure 1: Sketches of the flow configurations considered
in this paper: fixed unsteady horizontal vortex (a), vor-
tex pair (b). Solid lines are streamlines, dashed lines
are particle trajectories. Points A and B are the vortex
centres, P and P’ are trapping points
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Figure 2: Sketches of the leading-order particle phase
portraits in the flows (a) and (b) of Fig. 1. Hyperbolic
saddle-points are indicated with an H, solid lines are ho-
moclinic cycles

3 Particle trapping

When two point vortices are present (Fig. 1(b)), the flow
is unsteady due to the mutual interaction of the vor-
tices. If the total strength is non-zero, vortices rotate
at constant speed around their centre of vorticity and
the flow observed in the rotating frame is steady. Rela-
tive streamlines are sketched, in the case of two identical
vortices, in Fig. 2(b). As discussed in the introduction,
one can check that heavy inertial particles, in the ab-
sence of gravity, can have various equilibrium positions
in the rotating frame, where the (inward) drag balances
the (outward) centrifugal force. In the case of identi-
cal vortices, two equilibrium positions are asymptotically
stable: they attract inertial particles (see points P and
P’ of Fig. 2(b)). The corresponding basins of attraction
are smooth and separated [7].

Particles advected in this flow can therefore pack in the
vicinity of P and P’, and rotate as a solid-body with the
vortex pair (they are kept fixed in the rotating frame).
These equilibrium points can therefore be denoted as
"hydrodynamic Lagrange points", even though they cor-
respond to dissipative dynamics. They have been shown
to be rather robust, in that they persist (i) if vortices
have different strengths [8], (ii) if gravity is present [10],
(iii) if the vortex pair moves away because of a wall [9].

In case (i) the full trapping diagram has been obtained
[8], and one observe that one or two trapping points
always exist, provided the vortex strength ratio differs
from -1 and the particle Stokes number is small enough.
Any vortex pair can therefore behave as a dust trap, pro-
vided vortices live long enough and do not have opposite
strengths. In cases (ii) and (iii) the trapping points are
no longer fixed in the rotating frame, and move periodi-
cally.

Finally, trapping points have been shown to exist tem-
porarily if viscosity is taken into account [7]. In this case
vortices eventually merge after a few turnovers. How-
ever, if the flow Reynolds number is large enough, direct
numerical simulations show that heavy inertial particles
accumulate near the theoretical points P and P’, and
are eventually centrifuged away when vortex coalescence
occurs.

4 Particle trapping and fractal
basin boundaries

When the two point vortices interact in the vicinity of a
wall (modelled as a symmetry line in inviscid fluids), one
can easily check that the rotation of the vortices (with
non-opposite strengths) is no longer steady. In addition,
the distance between them is no longer constant. If the
wall is far enough, the distance between vortices is peri-
odic, with period half the wall-free rotation period [15]:
the wall therefore induces a natural oscillation of the
vortices, like in Ref. [16]. This unsteadiness will affect
the particle dynamics even though, as noticed above, the
trapping points P and P’ will persist. Indeed, the homo-
clinic cycles in the leading-order (i.e. inertia-free) parti-
cle dynamics (Fig. 2(b)), will break, due to the natural
unsteady forcing induced by the wall. A stochastic zone
will therefore exist in the vicinity of these cycles, and
particles might wander there and mix.

Particles exiting the stochastic zone will therefore be
either centrifuged away, or trapped by P or P’. Because
of the strong chaotic mixing occurring in the stochastic
zone, the basins of attraction of P and P’ will no longer
be separated: we expect them to have a fractal bound-
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ary. This means that for all scale λ (below the typical
vortex size and above the particle radius), the proba-
bility of having two particles, with an initial separation
λ, trapped by different attractors is non-zero. Compu-
tations of this uncertainty probability are currently in
progress (in collaboration with A. Motter (Northwest-
ern University) and R. Vilela (Federal University of Sao
Paulo)), and should confirm this point.

5 Conclusion

Even though the flows discussed in this paper are very
specific, we believe that the behaviours of inertial parti-
cles described here can be met in various contexts. The
stretch-sediment-and-fold mechanism (section 2) is based
on the finite terminal velocity of the inclusions, and on
the unsteady differential rotation: it does not depend on
the detailed shape of the rotating flow. Trapping points
(section 3) are a very interesting topic, especially if par-
ticles are heavy. Note that, because the spatial coordi-
nates of trapping points depend on the Stokes number,
particles with different physical properties will converge
towards different attracting points, provided their Stokes
number is below some critical value. Trapping therefore
induces separation.

The application of these various elementary situations
to turbulent flows must be done with care, as turbu-
lence cannot be reduced to interacting vortices. Note
however that, in two dimensional rotating turbulence,
anticyclonic pairing occurs repeatedly, leading to large
anticyclonic structures. These structures can trap parti-
cles, under certain conditions, because the Coriolis force
(due to the frame rotation) drives particles towards the
vortex cores [17]. This suggests that particles trapped
temporarily by attracting points, during vortex pairing,
might then drift to the centre of the resulting vortex
when coalescence is complete. Repeated vortex pairings
and dust capture could therefore be a mechanism of in-
terest for particle-laden two-dimensional rotating turbu-
lence.
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Abstract

We consider two separate systems, the magnetic field
generated by the turbulent flow of a rarefied plasma, and
quantum turbulence in superfluid helium. In both sys-
tems either the magnetic field or the vorticity field are
confined to thin filaments; we model these numerically as
discretised lines. To appropriately model either system
we must supplement the filament model with a turbu-
lent flow field. In order to reduce the complexity of the
numerical model we make use of ‘synthetic’ turbulence
models, using the so-called Kinematic Simulations (KS)
model; a summation of random Fourier modes. We shall
show that observational and experimental results can be
reproduced using the filament approach, in combination
with the KS flow field.

1 Introduction

The evolution of magnetic field B, embedded in a flow
at a velocity u is governed by the induction equation,

∂B

∂t
= ∇× (u×B) + η∇2

B, (1)

if the magnetic diffusivity, η, is constant. The equation
for the evolution of the fluid vorticity, ω = ∇× u, takes
a similar form,

∂ω

∂t
= ∇× (u× ω) + ν∇2

ω, (2)

where ν is the kinematic viscosity. Whilst the similarity
is striking, vorticity is functionally related to the velocity
field, whereas the magnetic field is not.
In rarefied plasmas, such as the Solar corona, hot gas

in spiral and elliptical galaxies, galactic and accretion
disc halos there is strong observational evidence that the
magnetic field is confined to thin filaments or flux tubes
[1, 2]. It is interesting to note that these are some of
the highest temperatures in the universe. At the oppo-
site end of the temperature scale, close to absolute zero,
helium-4 enters the superfluid (inviscid) phase through
Bose-Einstein condensation. Due to quantum mechani-
cal constraints in a superfluid vorticity in constrained to
thin quantised vortices with a fixed size and strength [3].
Both these systems are therefore ideal candidates for

numerical modelling using filament methods. If we can
assume that the average radius of curvature is much
larger than the filaments core size, then we can approx-
imate the filaments as three dimensional space curves.
Numerically these can be represented as a collection of
N oriented points. In both systems we can readily de-
fine appropriate evolution equations for these filaments,

however before doing so we shall describe the basic algo-
rithms of the filament model.

2 Filament models

We represent the set of filaments in our system as space
curves s = s(ξ, t) of infinitesimal thickness, where t is
the time and ξ is arc length. The filaments are numeri-
cally discretised to leave a set of N oriented points. We
can readily define numerical approximations to spatial
derivatives along the filaments. Let si be the i

th point on
the filament; the points behind and infront have positions
si−1 and si+1 respectively. We denote ℓi = |si − si−1|,
ℓi+1 = |si+1 − si|, hence:

s
′

i =
ℓiss+1 + (ℓi+1 − ℓi)si + ℓisi−1

2ℓi+1ℓi
+ (O)(ℓ2) (3)

s
′′

i =
2si+1

ℓi+1(ℓi+1 + ℓi)
− 2si

ℓi+1ℓi
+

2si−1

ℓi(ℓi+1 + ℓi)
+ (O)(ℓ2)

(4)
In section 4 we define the appropriate velocity fields

for the filaments. Here we shall assume that the fila-
ments move with a velocity u(s, t). In order to numeri-
cally time-step the filaments we use a 3rd order Adams–
Bashforth scheme. Given an evolution equation, for the
ith point, of the form dsi/dt = ui, the recursion formula
is

s
n+1
i = s

n
i +

∆t

12
(23un

i −16un−1
i +5un−2

i )+O(∆t4). (5)

where ∆t is the time-step and the superscript n refers
to the time tn = n∆t (n = 0, 1, 2, · · · ). Lower order
schemes are used for the initial steps of the calculations,
when older velocity values are not available.
As the points along the filament move, the separation

between neighbours along the same filament is not con-
stant. In general this is not a problem, we have defined
finite-difference schemes which work with an adaptive
mesh size. However the distance between points sets the
resolution of the calculation, therefore we must set some
upper-bound on the distance between points before we
re-mesh the filaments through the introduction of new
points. Our criterion is the following: if the separation
between two points, si and si+1, becomes greater than
some threshold quantity δ (which we call the minimum
resolution), we introduce a new point at position si′ given
by

si′ =
1

2
(si + si+1) +

(

√

R2
i′ −

1

4
ℓ2

i+1 −Ri′

)

s
′′

i′

|s′′

i′ |
, (6)
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Figure 1: A schematic of the reconnection procedure
used in the filament model

where Ri′ = |s′′

i′ |−1. In this way s
′′

i′ = (s
′′

i + s
′′

i+1)/2,
that is to say the insertion of new points preserves the
curvature. Our procedure is thus superior to simpler
linear interpolation.
Conversely, points along the filament are removed if

their separation becomes less than δ/2, ensuring that
the shortest length-scale of the calculation remains fixed.
Importantly the vector fields in both systems are diver-
gence free, ∇ ·B = ∇ ·ω = 0. The model maintains this
constraint the filaments in our system must always form
closed loops.
Periodic boundary conditions are readily enforced by

re-inserting points, which leave a periodic cube, on the
opposite side. So-called ‘ghost’ particles can be used
to simplify the algorithms for calculating spatial deriva-
tives.

3 Reconnections

Both systems that we shall consider are highly turbu-
lent, therefore we must pay particular attention to en-
ergy dissipation. In rarefied plasmas an important (if
not dominant) mechanism for the dissipation of magnetic
energy is the reconnection of magnetic lines rather than
magnetic diffusion [4]. Magnetic reconnection is usually
modelled with the induction equation (perhaps including
the Hall current), and magnetic dissipation is enhanced
due to the development of small-scale motions and mag-
netic fields. This approach may or may not apply to
magnetic fields concentrated into flux ropes, where mag-
netic energy losses are strongly reduced at large scales
and, hence, more energy can be deposited at the smaller
scale of order the tube radius, where reconnections oc-
cur. By modelling the magnetic field in the thin filament
approach we explore this possibility.
We know from experiments [5] and from more micro-

scopic models [6] that superfluid vortex lines can recon-
nect with each other when they come sufficiently close,
as envisaged by Feynman [7]. Superfluid vortex recon-
nections do not violate Kelvin’s theorem as near the axis
of the vortex core, where density and pressure vanish and
velocity diverges, the governing Gross-Pitaevski equation
(GPE) differs from the classical Euler equation.
Reconnections, which provide both a dissipation mech-

anism as well as topological changes to the filaments, are
not a natural solution to our model. Hence we model re-
connection events algorithmically in the following way.

If two discretisation points, which are not neighbours,
become closer to each other than the local discretisation
distance, a numerical algorithm reconnects the two fila-
ments by simply switching flags for the points in front
and behind the filament, subject to the criterion that
the total length decreases. As in both systems we can
use line length as a proxy for the energy of the system,
this criterion ensures reconnection events are dissipative.
A schematic of the reconnection procedure is shown in
Fig. 1.
Self-reconnections (which can arise if a filament has

twisted and coiled by a large amount) are treated in the
same way. Finally in both systems parallel filaments are
not able to reconnect. Therefore prior to reconnection
we form local (unit) tangent vectors s

′, and, using the
inner product, we check that the two filaments are not
parallel.

4 Evolution equations

4.1 Frozen flux

The magnetic flux, Ψ, through a surface S moving with
the fluid, is defined as

Ψ =

∫

S

B · dS. (7)

In the limit of zero magnetic diffusivity Ψ is a conserved
quantity. Hence fluid motion along the magnetic field
lines do not change the field, but motions transverse to
the field carry the field with them. The magnetic field
is said to be ‘frozen in’, and a magnetic flux tube will
simply be advected by the flow. Thus at a the ith point
on the magnetic filament the evolution equation is simply
written,

dsi

dt
= up(si, t). (8)

Here up is the velocity field of the electrically conducting
fluid the field is embedded in. In this work we shall use
a synthetic model of turbulence, introduced in section 5,
to act as the velocity field of a turbulent plasma.
Each particle is also assigned a flag B for the strength

of magnetic field at that point on the loop. Assuming
magnetic flux conservation and incompressibility, mag-
netic field strength in the flux tube is proportional to its
length. Magnetic field is initially constant at all points,
B = B0. When a new particle is introduced, the mag-
netic field strength is doubled at the points involved.
Likewise as points are removed, due to local contraction
the magnetic field strength is halved. We have verified
that this prescription reproduces accurately an exact so-
lution of the induction equation for a simple shear flow
[8].

4.2 Quantised vortex dynamics

We consider a system of liquid helium. At zero temper-
ature the systems is purely superfluid, and as discussed
earlier, vorticity is confined to thin vortex filaments. The
evolution of the quantised vortex filament (at the point
s) is given by the Biot-Savart law

ds

dt
= − Γ

4π

∮

L

(s− r)

|s− r|3 × dr. (9)

The line integral extends over the entire vortex config-
uration L. The singularity at s = r is removed in a
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standard way by considering local and non-local contri-
butions to the integral. If si is the position of the ith

discretisation point along the vortex line, Eq. 9 becomes
[9]

dsi

dt
=

Γ

4π
ln

(

√

ℓiℓi+1

a

)

s
′

i × s
′′

i −
Γ

4π

∮

L′

(si − r)

|si − r|3 × dr.

(10)
Here L′ is the original vortex line without the section
between si−1 and si+1. In this work we use param-
eters which refer to superfluid 4He: circulation Γ =
9.97× 10−4 cm2/s and vortex core radius a0 ≈ 10−8 cm,
but our results can be generalised to turbulence in low
temperature 3He-B.
At finite temperatures superfluid helium is a two fluid

system: a viscous normal fluid component coexisting
with an inviscid superfluid component. The super-
fluid vortices interact with the thermal excitations which
make up the normal fluid, introducing a mutual friction
force between the two fluid components. This means
that turbulence in the quantum fluid can be driven by
the flow of the normal fluid or vice-versa.
The governing equation of motion of the superfluid

vortex lines, at point s is given by the Schwarz equation
[9]

ds

dt
= us+αs

′×(un−us)−α′s′× [s′ × (un − us)] , (11)

where α, α′ are temperature dependent friction coeffi-
cients [10], un is the normal fluid’s velocity (modelled
using KS), and the velocity us is the velocity field the
quantised vortices calculated using Eq. (10).
In both the flux rope magnetic field model, and the

vortex filament method we strictly should model the tur-
bulent fluid (up/un) using the Navier-Stokes equation.
This would allow for us to introduce a coupling between
the systems due to either the Lorentz force, in the case
of magnetic flux tubes, or the effect of mutual friction
on the normal fluid, in the quantum turbulence model.
In both our systems one can offer compelling arguments
as to why this coupling can effectively be ignored. If we
assume that the magnetic field is weak then the Lorentz
force can be assumed to be small and so neglected, this is
referred to as the kinematic regime. Likewise if the tem-
perature is relatively high, in superfluid helium, then the
normal fluid is the dominant component in the two fluid
system. Here we prescribe a turbulent like flow which is
numerically efficient to calculate.

5 KS model

We shall model both the turbulent plasma and normal
fluid using the Kinematic Simulation (KS) model of a
turbulent flow [11]. Here velocity at a position x and
time t is

u(x, t) =

NKS
∑

n=1

(An × kn cosφn +Bn × kn sinφn) , (12)

where φn = kn · x+ ωnt, N is the number of modes, kn

and ωn = knun are their wave vectors and frequencies.
An advantage of using this flow is that the energy spec-
trum, E(kn) is controllable via appropriate choice of An

and Bn. We also note that the flow is incompressible,
∇·u = 0. In all simulations we adopt an energy spectrum
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Figure 2: A slice in the xy-plane (z = 0) of the magni-
tude of the velocity (u) of the KS flow with NKS = 100,
and Re = (kNKS

/k1)
4/3 = 17.11, with velocity vectors

overplotted in white
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Figure 3: A typical state of the growing magnetic field
in the flux rope dynamo simulations. The colour coding
is according to the local magnetic field strength

which reduces to E(k) ∝ k−p for 1 ≪ k ≪ kNKS
, with

k = 1 at the integral scale; p = 5/3 produces the Kol-
mogorov spectrum, and kNKS

is the cut-off scale. The ef-
fective Reynolds number Re = (kNKS

/k1)
4/3 is defined by

the condition that the dissipation time equals the eddy
turnover time at k = kNKS

. Finally we have adapted
Eq. (12) to periodic boundary conditions by enforcing a
2π dependence in each component of the wavevector k.

6 Flux Rope Dynamo

We shall now discuss the set-up and results of the fila-
ment model for the magnetic field. We initially consider
a set of random loops dispersed throughout a periodic
unit cube. The filaments are advected by the KS flow and
we find the total filament length, a proxy for the mag-
netic energy, grows exponentially (B(t) ≈ B0 exp(σt));
as we would expect from kinematic dynamo theory [12].
In Fig. 3 we show a snapshot of the flux rope dynamo
showing the tangled structure of the magnetic field. Of
interest in this work is the amount of magnetic energy
released in each reconnection event, and the statistics of
energy release. To place the reconnection-based dynamo
into a proper perspective, we compare it with a dynamo
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Figure 4: Magnetic energy release rates from the induc-
tion equation (dashed) and the flux rope model (solid).
The former has a mean value of 2.4 (here Rm = UL/η =
1200) once the eigensolution has developed. The latter
has a mean value of 23 (thick horizontal line)

obtained for the same velocity field, but by solving the
induction equation, i.e. Eq. (1). In particular, we com-
pare the rates of magnetic energy dissipation, which can
be identified with the plasma heating rate. We assume
that the part of the magnetic energy which drives plasma
motion at a reconnection site (such as jets) is eventually
dissipated into heat as well, so that we consider that the
whole magnetic energy released is converted into heat.
For the induction equation, the relevant quantity is

γi = d lnM/dt =

∫

V

ηB·∇2
B dV

[
∫

V

B
2 dV

]−1

, (13)

whereM is the total magnetic energy. A similar quantity
can be obtained for the reconnection-based dynamo by
adding the contributions of all reconnection events to the
magnetic energy release:

γr =
d lnM

dt
=

1

8πMτ

Nτ
∑

i=1

B2
i SiLi , (14)

where τ is a time interval during which Nτ reconnections
occur (we take τ to be equal to ten time steps; indi-
vidual reconnection events occur in a single time step),
and Bi, Si and Li are the magnetic field strength, the
cross-sectional area and length of the reconnected (and
thus removed) flux tube segment associated with a par-
ticle number i. From our assumption of frozen flux,
BiSi = ψ = const, the total magnetic energy M is,

M =

N
∑

i=1

B2
i

8π
SiLi =

ψ

8π

N
∑

i=1

BiLi , (15)

where N is the number of discretisation points in the
system, and

γr = τ−1

Nτ
∑

i=1

BiLi

[

N
∑

i=1

BiLi

]−1

. (16)

The initial condition for the induction equation is ob-
tained by Gaussian smoothing of the magnetic field in
the ropes (this procedure preserves ∇·B = 0). To evolve
the induction equation, we use the Pencil Code [13] on a
2563 mesh in a periodic box.
Figure 4 shows the energy release rates in simulations

where the growth rate of the magnetic field is σ = 0.16 in
both simulations (with the unit time l0/u0). The dashed

0 0.4 0.8 1.2 1.6

10
−9

10
−7

10
−5

10
−3

10
−1

log∆M/B2
rms

P
ro
b
ab
il
it
y
d
en
si
ty

Figure 5: Probability density for the normalized mag-
netic energy release in individual reconnection events,
∆M/B2

rms, from the time series of Fig. 4, for the flux
rope dynamo (circles) and the diffusive dynamo with the
same magnetic field growth rate and velocity field form
(squares). A power-law fit to the former and a Gaussian
fit to the latter are shown solid and dashed, respectively
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Figure 6: A snapshot of the system of quantised vortex
filaments during the statistically steady state (t = 6 s)
seen in Fig. 7

line shows the energy release rate from a simulation
of induction equation with magnetic Reynolds number,
Rm = UL/η = 1200, which has the mean energy release
rate γi ≈ 2.4. The solid line shows the corresponding
results from the flux rope dynamo, with the mean value
plotted as a dashed horizontal line. The mean value of
the energy release rate from the reconnecting flux rope
dynamo is γr ≈ 23, an order of magnitude larger. Also
note strong fluctuations in the energy release rate from
the reconnection model, which are absent in the solutions
of the induction equation.

A remarkable feature of the energy release in the fila-
ment dynamo model is that its probability distribution
has a power law as shown in Fig. 5, f(x) ∝ x−s, where
x = ∆M/B2

rms is the magnetic energy released in a re-
connection event normalized to the mean magnetic en-
ergy, with the slope s ≈ 3.3. A similar exponent arises
in a reconnection model for the corona [14] where, how-
ever, dynamo action is not included. Thus, weak ‘flares’
dominate the energy release in our reconnection-based
system, as in the Parker’s nanoflare model of coronal
heating [15].
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7 Velocity statistics in quantum
turbulence

We now present the results of the simulations of quantum
turbulence, with an imposed turbulent normal fluid, us-
ing the KS model. Our initial system is a set of random
vortex loops in a periodic cube of size D. The mutual
friction between the system of quantised vortices and the
‘turbulent’ normal fluid leads to a rapid growth in the
total length of the filaments, Λ, and hence the vortex line
density L = Λ/D3. Eventually the line density saturates,
as dissipation due to reconnections balances energy input
from the normal fluid, and a statistically steady state is
reached, as is seen in Fig. 7; figure 6 shows a snapshot
of the system in this state.

We calculate the velocity field induced by the quan-
tised vortices, Eq. (9) at points on a 5122 Cartesian mesh
in the xy-plane (z = 0). This procedure is repeated for
the KS flow, Eq. (12). We take the Fourier transform
of these velocity fields to calculate the energy spectra
for both the normal and superfluid components. These
spectra are displayed in Fig. 8. The imposed Kolmogorov
spectrum is clearly visible in the energy spectrum of the
normal fluid. It is also clear, at large scales, that the
energy spectrum of the quantum fluid is classical in its
nature, with a k−5/3 scaling; this result has also been re-
ported experimentally [16]. Whilst one may expect this
at finite temperatures due to the coupling to the normal
fluid, this remarkable feature of quantum turbulence has
also been seen in numerical simulations at zero temper-
ature [17].

Despite the classical nature of the superfluid energy
spectrum, the statistics of superfluid velocity compo-
nents display power-law behaviour. The probability den-
sity functions (normalized histogram, or PDF for short)
scale as PDF(vs,i) ∝ vb

si (i = 1, 2, 3) with average expo-
nent b = −3.1, see Fig. 9. This scaling was observed in
turbulent helium experiments [18], and was also recently
calculated in turbulent atomic condensates[19]; its cause
is the singular nature of the superfluid vorticity[19]. The
vortex line velocity ds/dt obeys non-Gaussian scaling
too. The statistics of velocity components in ordinary
turbulence, on the contrary, are Gaussian[20].
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8 Summary

We have shown that filament models provide efficient
methods to simulate complex physical systems, repro-
ducing experimental and observational phenomena. Fur-
thermore we have shown that the KS model, a ‘synthetic’
turbulent field, can be used to model the turbulent sys-
tem our filaments exist in. Indeed the analytic form of
the KS flow particularly suites the Lagrangian nature of
the filament method as no interpolation of the velocity
field is required.
In the magnetic flux rope model, where magnetic dis-

sipation is suppressed at all scales exceeding the recon-
nection length, the rate of conversion of magnetic energy
into heat in the reconnection dynamo is a order of mag-
nitude larger than in the corresponding diffusion-based
dynamo. This result, here obtained for a kinematic dy-
namo, can have serious implications for the heating of
rarefied, hot plasmas where magnetic reconnections dom-
inate over magnetic diffusion such as the corona of the
sun and star, galaxies and accretion . In contrast to
the fluctuation dynamo based on magnetic diffusion, the
probability distribution function of the energy released
in the flux-rope dynamo has a power law form not dis-
similar to that observed for the solar flares.
The quantum turbulence calculations presented repro-

duce the main observed features, including the classical
k−5/3 Kolmogorov energy spectrum, thought to be asso-
ciated with large-scale, energy-containing polarization of
vortex lines. We have also reproduced the the observa-
tion of non-Gaussian velocity statistics which distinguish
quantum turbulence from its classical analogue.
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Synthetic Turbulence via the Minimal Lagrangian Map
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1 The Minimal Lagrangian Map

Several approaches have been introduced for the gen-
eration of synthetic turbulence, understood as the con-
struction of field variables having characteristic features
of turbulent fluctuations, but computable at reduced
cost compared with a numerical solution of Navier-Stokes
equations. These methods have been based on stochas-
tic processes, multiplicative constructions or restricted
dynamics (Refs. [1]-[5], for example). Some of them are
limited to one-dimensional signals, while those producing
three-dimensional velocity fields give basically Gaussian
statistics, and do not reproduce the non-Gaussianity of
turbulent flows. The non-Gaussian statistics is a crucial
feature of turbulence and has important consequences on
its dynamics. The development of essential nonlineari-
ties, such as the predominance of vortex stretching and
the self-amplification of the strain rate, are directly re-
lated to it, as well as phase coherency of Fourier modes.
These phase correlations imply coherence of motions,
which manifest in the typical structure of a turbulent
field, characterized by locally organized flow patterns, at
different scales. In contrast, synthetic Gaussian fields
present only incoherent disorderly motion. All these fac-
tors imply that when synthetic Gaussian turbulence is
employed as initial condition or inlet boundary condi-
tion in numerical simulations, it dissipates very quickly,
and thus a significant part of the total simulation time
(or of the computational domain in the second case) has
to be used for the regeneration of realistic turbulence.

Here we present a method that has been introduced
and studied in detail in Refs. [6]-[8]. This approach
has been called “Minimal Turnover Lagrangian Map”
(MTLM) and it has shown to be able to generate three-
dimensional synthetic fields endowed with many realistic
turbulent characteristics for velocity fields as well as for
passive scalar variables. The basic idea is to build a ve-
locity field by distorting an initially random field over a
hierarchy of spatial scales as described below. At each
scale, the deformation is equivalent to the inertial advec-
tion of fluid particles during the local characteristic time
scale (“turnover time”) according to Kolmogorov phe-
nomenology. The field is kept solenoidal by projecting
onto its divergence-free part.

If we consider a system of fluid particles in which all
interactions among them are suppressed (i.e. no pressure
or viscous effects), the equation of motion reduces to the
Riemann equation

∂tu + u · ∇u = 0, (1)

corresponding to material points moving with constant
velocity u in Lagrangian coordinates. A fluid particle at
position x at t = 0 is simply mapped to

X(t) = x + tu(x, 0), (2)

(whence the Lagrangian map denomination), where t is

a parameter of the map, while

u(X(t), t) = u(x, 0). (3)

Even though the motion of a single particle under this
equations is rather trivial, consideration to an ensem-
ble of them leads to interesting and highly non-trivial
results. Similarly, if there is a scalar property θ pas-
sively advected by this velocity field, its transport equa-
tion simplified in a consistent way with (1) is

∂tθ + u · ∇θ = 0, (4)

where diffusion effects are excluded. Hence, the scalar
in carried along by the fluid particles unchanged:
θ(X(t), t) = θ(x, 0).

To resemble the multiscale nature of turbulence these
mappings are applied over a hierarchy of spatial scales
ℓn = 2−nℓ0, n = 1, . . . , M, with ℓ0 being of the order of
the turbulence integral scale, L, and the number M of
scales is such that ℓM ∼ η, where η is the Kolmogorov
length scale. Since the procedure applied to the velocity
and the scalar are similar, the generic variable φ is used
here to denote the vector u or the scalar θ. For each scale
ℓn (or level n in the sequence), the field φ is decomposed
into low-pass and high-pass filtered parts:

φ(x) = φ<
n (x) + φ>

n (x) ; φ = u, θ. (5)

The low-pass filtered fields φ<
n are obtained by filtering,

in wavenumber space, the fields obtained at the previous

scale ℓn−1: φ̂<
n (k) = H(π/ℓn − k)φ̂n−1(k), where ·̂ de-

notes Fourier-transformed quantities, ad H is the Heav-
iside function. For the first scale, the initial fields φ0

are generated by specifying Fourier modes with random
phases and amplitudes modulated to match prescribed
spectra, E(k) and Eθ(k), for the energy and the scalar
variance respectively. In the case of the velocity, the field
is also made solenoidal.

These low-pass filtered fields are distorted by displac-
ing fluid particles located at positions x0 ≡ x(t = 0) over
a grid with mesh spacing ℓn, to new positions X given
by (2),

φ<
n (X) = φ<

n (x0) ; X = x0 + tnu<
n (x0), (6)

where the parameter tn is determined as

tn =
ℓn

u<
rms,n

, (7)

and u<
rms,n is the root-mean-square value for u<

n . New

field values, φ̄<
n , at Eulerian positions x on the regu-

lar grid are obtained by interpolation from the values
of φ<

n (X) for the surrounding fluid particles which have
come into the neighborhood of x after the mapping. The
interpolation used is a simple weighted average over a
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ball of radius ℓn around x, with the inverse of the dis-
tance |X− x| as the weighting function:

φ̄<
n (x) =

∑

|X−x|<ℓn

|X− x|−1φ<
n (X)

∑

|X−x|<ℓn

|X− x|−1
. (8)

As indicated before, the total deformation introduced
at each scale is equivalent to a displacement during the

phenomenological turnover time τn ≈ 〈ε〉
−1/3ℓ

2/3
n , where

〈ε〉 is the mean energy dissipation rate. As given by (7),
tn is shorter than τn so that in order to accumulate the
appropriate deformation at each scale, the mapping is
applied several times before advancing to the next scale
(the reason is to allow the introduction of spatial distor-
tion but to avoid at the same time a re-randomization
of the field by destruction of the coherency introduced
by the mapping at the previous scales; in any case, the
number of repetitions of the mapping for each scale is
quite small).

After each mapping displacement, the resulting inter-
polated fields are rescaled in order to keep constant their
r.m.s. values. Additionally, the velocity field is restored
to its zero divergence condition. This is done by pro-
jection in wavenumber space, and thus the solenoidal
velocity field, ũ<

n , to be used for the next particle dis-
placement has as Fourier transform

̂̃u<
n = |̂̄un|

P ̂̄u<
n

|P ̂̄u<
n |

, (9)

where Pij = δij − kikj/k2. This is the only difference
between the procedure applied to u<

n and the procedure
applied to θ<

n , which do not require any projection in
Fourier space.

After deforming the fields at scale ℓn, their Fourier

modes ̂̄φ<
n are rescaled to maintain the prescribed spec-

tra, and combined with their high-pass-filtered parts,
which have remained unaltered at the current scale:

φ̂(k) = ̂̄φ<
n (k)

√√√√Eφ(k)

/
1
2

∑

|q|=k

|̂̄φ<
n (q)|2 + φ̂>

n (k). (10)

These recomposed fields contain now hierarchically de-
formed scales up to a size ℓn, and smaller random scales
which are still Gaussian. They are the starting fields for
the next scale ℓn+1. Progressing in this way until reach-
ing ℓM gives rise to the synthetic velocity and scalar
fields.

2 Synthetic Turbulent Fields

Several synthetic fields were computed on a periodic
cubic domain [0, 2π]3 with N = 2563, 5123 and 10243

points. The spectra for kinetic energy and scalar variance
prescribed are standard Kolmogorov and Kolmogorov-
Oboukhov functions, with exponential decay in the dis-
sipative range. For the scalar θ an inertial-convective
regime is taken, with Schmidt number Sc = 0.7. Param-
eters in these functions (such as viscosity, diffusivity)
are specified such that the Kolmogorov scale is of the
order of the mesh resolution. With this, the equivalent
Reynolds numbers ℜλ (on Taylor scale) for the synthetic
turbulence are in a range from 159 to 406.

Figure 1 shows the probability distribution (normal-
ized by their standard deviations) of the longitudinal
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Figure 1: PDF for: ∇‖u (dashed line), ∇⊥u (dotted-
dashed line) and ∇θ. Synthetic field at Reλ = 406
with 10243 generating points. Green line is a normal-
ized Gaussian distribution

N Reλ Peλ F [∇θ] F [∇‖u]
2563 159 111 11.65 6.37
5123 255 178 20.01 7.94
10243 406 284 28.45 10.33

Table 1: Flatness for scalar and longitudinal velocity gra-
dients, obtained at different Reynolds numbers. Peλ is
the Péclet number

velocity gradient (∇‖u), the transverse velocity gradi-
ent (∇⊥u) and the scalar gradient (∇θ) for a case with
Reλ = 406. These distributions depart strongly from
the Gaussian and resemble quite well those observed
in real turbulence, with tails that flare out tending to
adopt a stretched exponential form. While the PDFs
for ∇⊥u and ∇θ are symmetrical, the PDF for the ∇‖u
presents negative skewness. For all the cases computed
this skewness is about −0.4, which agrees very well with
the known value in Navier-Stokes turbulence. It is appar-
ent also from the figure that the flatness for ∇θ is higher
than for the velocity gradients. Some values for the flat-
ness are given in Table 1, and they match correctly ex-
perimental values for Reλ and Peλ in these ranges [9, 10].

In order to probe the statistics of these fields at all
(not just the smallest) scales, they are evaluated also for
the longitudinal and transverse velocity increments, δur

and δvr respectively, and for the scalar increments, δθr,
as a function of points separation r. Results for the PDF
of δθr are shown in Fig. 2. In this plot, the separations
are expressed as multiples of the smallest resolved scale
ℓM . The strong non-gaussianity seen at dissipative scales
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δθ/σδθ
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Figure 2: PDF of normalized scalar increments for
Reλ = 406. The curves are for r/ℓM = 2n (n = 0, . . . , 8)
and 500 from the outermost. Red line with × marks is a
Gaussian
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Figure 3: Flatness (F ) and skewness (S) of δu as func-
tion of separation r between points. Solid line: Reλ =
407; dashed line: Reλ = 253
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Figure 4: (a) Third-order scalar-mixed structure func-
tions. (b) Third-order longitudinal velocity structure
functions. (Dashed straight lines denote power laws with
exponents 1 or 3)

decreases as the scale grows, but it is still significant in
the inertial-convective range. For large-scale separations
the PDFs approach the Gaussian distribution, becoming
slightly sub-Gaussian at the largest probing scales. This
whole behavior is consistent with observations in real
turbulence. A similar persistence of non-Gaussian char-
acter in the inertial range is obtained for δur and δvr.
As an example, Fig. 3 shows the flatness and (negative)
skewness of the longitudinal velocity increments δur at
different separations r nondimesionalized by the small-
est scale ℓM . Both parameters increase steadily in the
inertial range, and on approaching the dissipative range
they undergo a very steep increment.

Kolmogorov’s four-fifths law and Yaglom’s four-thirds
law

〈(δur)3〉 = −
4

5
〈ε〉r ; 〈δur(δθr)2〉 = −

4

3
〈χ〉r, (11)

where 〈χ〉 is the mean scalar dissipation, are fundamental
theoretical results in homogeneous isotropic turbulence,
considered asymptotically exact. Computed values for
these third-order structure functions are shown in Fig.
4, and the trend is correctly recovered, as both functions
increase proportional to r, to a good approximation, over
a range of scales, which widens with increasing Reλ. it
is observed also that both moments approach a ∼ r3

scaling at very small (dissipative) scales, as it should
be for regular fields. In this synthetic case one cannot
expect to match the 4/3 or 4/5 proportionality constants,
which come from the actual dynamical equations. The

constants however are in the order of magnitude of the
theoretical values (see Ref. [8]).

The scaling properties of the field can be characterized
in more detail evaluating structure functions of higher-
order:

SL
q (r) = 〈(δur)q〉 , ST

q (r) = 〈(δvr)q〉, (12)

Sθ
q (r) = 〈(δθr)q〉 , SθL

q (r) = 〈[δur(δθr)2]q/3〉 (13)

It is well-known that the scaling of these functions as

power laws of separation, Sφ
q (r) ∝ rζφ

q (where φ stands
for the labels θ, θL, L, T ), does not follow the dimen-
sional prediction ζφ

q = q/3 of Kolmogorov-type theories,

and the scaling exponents ζφ
q become a non-decreasing

concave function of q. Scaling exponents obtained from
the MTLM synthetic fields were calculated for even or-
ders q = 2, 4, 6, 8. Given the much stronger intermit-
tency of the scalar field, it is more difficult to obtain
converged high-order statistics for the scalar than for the
velocity. For this reason the order here is limited up to
q = 8 (in [7] the scaling of the velocity is studied up
to order 12). Figure 5 shows that the synthetic velocity
field presents anomalous scaling in good agreement with
the real turbulence data (from Refs. [11]-[14]). Results
for the mixed scalar-velocity structure functions are also
consistent with the real turbulence values. The scaling
exponents for the scalar structure functions are given in
Fig. 6. The black symbols joined by a solid line show
the trend for the MTLM synthetic field, while the other
coloured symbols come from experimental and numerical
results in turbulence [15, 16, 17, 18].

In Fig. 6b, the range of reported values in those
sources (without taking their error range estimates) is
shown as a band for more clarity. The values for the
synthetic field are somewhat above the Navier-Stokes
data, although that can be due to some uncertainty in
the proper scaling range. In Fig. 6c the exponents are
shown divided by ζθ

2 , along with experimental measure-
ments from [19] which presented their results in this form
(error bars are for those experimental values). The rela-
tive MTLM exponents are well within their data range.
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3

ζ q

2 4 6 8 10
q
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q
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1
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ζ q
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θL

Figure 5: Scaling exponents for:(a) SL
q (r), (b) ST

q (r),

and (c) SθL
q (r). Black circles are results for synthetic

fields. Red symbols are results in Navier-Stokes tur-
bulence, from several sources. The dashed lines show
Kolmogorov-type scaling
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Figure 7: Contours of isovorticity. (a) 10242 slice for
a MTLM field at Reλ = 047. (b) Zoom-in view for the
1282 central subregion in (a)

In Fig. 6d these relative exponents are shown again in-
cluding all the data in Fig. 6a normalized in this way.
The dashed lines in Fig. 6 correspond to scaling given
by the Kraichnan model [20]. Although the advection of
passive scalars by by that kind of synthetic Gaussian ve-
locity fields can lead also to the growth of some degree of
intermittency, it seems that not only repeated stochastic

Figure 8: (a) Contours of θ/θrms (marks on left are the
locations for 1D horizontal profiles in Fig. 9) (b) Con-
tours of χ/〈χ〉 at the same plane

straining suffices to replicate the anomalous scaling of
turbulence, but also the spatial structure and coherency
of the velocity field, acquired by self-distortion, has an
important role.

Figure 7 shows contour of vorticity magnitude, ω, for
a slice of a 10243-node synthetic field (the values are
normalized by the maximum ω in the field). The figure
depicts also the integral scale L and a multiple of Kol-
mogorov scale η, according to the parameters used in the
synthesizing. The strong vorticity appears concentrated
in thin elongated regions, with a very small space-filling
volume fraction, embedded in a background of weak ω,
resembling the spatial distribution of vorticity in turbu-
lent flows. By contrast, for a Gaussian synthetic field, ω
has a structureless fine-grained uniform pattern. A more
detailed analysis of these structures has shown that they
are akin to vortex sheets [6, 7].

Contours of θ normalized by its r.m.s. value can be
seen in Fig. 8a. The characteristic aspect of inertial-
convective turbulent mixing is apparent, with θ orga-
nized into regions of relatively low fluctuations separated
by large jumps. The magnitude of these jumps is of the
order of θrms. Convoluted boundaries for the regions of
relative homogeneity extend for distances of the order
of the integral scale, contrasting with the abrupt vari-
ation of θ in the direction transversal to them. Figure
9 provides another view by means of one-dimensional
cuts through Fig. 8a, displaying clearly the sharp jumps
in θ through the boundaries separating region of lower
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Figure 10: PDF of normalized χ. Solid line: Reλ =
406, dashed line: Reλ = 255. The inset shows the same
curves in logarithmic scale. Green curve is fitting of the
form χ−1/2 exp(−aχb)

fluctuations. All this features are very similar to the
“ramp-cliff” structures observed in real turbulence. In
Fig. 8 it is also shown the scalar dissipation normal-
ized by its mean, illustrating the high intermittency of
χ. Note that the tone scale for χ contours is exponential,
so that the long light-toned convolute d lines that stand
out from the darker background are extremely sharped
ridges taking place along the same locations where the
“cliffs” for θ occur. The PDF of χ is shown in Fig. 10.
The low dissipation range (〈χ〉 < 1) is the most prob-
able, as can be seen in the inset. These low dissipa-
tion regions are plausibly associated with the “plateaux”
among the cliffs. There are however rare but very in-
tense deviations above the mean, corresponding to the
ridges whose spatial distribution is shown in Fig. 8b.
Figure 10 also shows least-square fittings of the form
P (χ) ∝ χ−1/2 exp(−aχb). This kind of function is to be
expected when ∇θ has as PDF with stretched exponen-
tial form, and it has been observed to fit well the results
in Navier-Stokes turbulence, as it occurs here over a con-
siderable range. The PDF for the energy dissipation was
found also to have a qualitatively similar distribution.

Several characteristics of the statistical geometry asso-
ciated with the structure of the synthetic MTLM fields
have been studied, for the velocity and vorticity fields, as
well as for aspects that stem from the joint statistics of
velocity and scalar fields (Refs. [6]-[8]), showing an inter-
esting similarity with Navier-Stokes turbulence. Figure
11 shows for example the PDF for the cosines of the an-

gles between the vorticity vector ω and the eigenvectors
{e(1), e(2), e(3)} of the strain-rate tensor Sij , designated
according to the ordering of the corresponding eigenval-
ues λ1 < λ2 < λ3, obtained for 2563-node synthetic field
with Reλ = 84, using an early form of the procedure [6].
Even in that case, the preferential alignment of ω with
the intermediate eigenvector e(2) is very well reproduced,
and the whole turbulent distribution for the three angles
is well captured.

Finally Fig. 12 presents the joint PDF of the sec-
ond and third invariants of the velocity gradient tensor,
Q and R, normalized by the magnitude of the rate of
strain Q∗ ≡ Q/〈SijSij〉, R∗ ≡ R/〈SijSij〉

3/2, for the
same velocity field of Fig. 11. The distribution matches
well the observations in real turbulence, with predom-
inance of the probability in the (R < 0, Q > 0) and
(R > 0, Q < 0) quadrants, and with a tail extending
into this last quadrant along the line ( 1

2 R)2 + ( 1
3 Q)3 = 0

which separates the region of real and complex eigen-
values of ∂jui. The concentration along this side of the
line is an indication of bi-axial extension as the prevalent
state of strain. Such situation is associated in turbulence
with the formation of vortex sheets and the production
of negative skewness for longitudinal velocity gradients.
In this synthetic case it can be attributed to the squeez-
ing of fluid elements into sheet-like structures produced
by the Lagrangian map.

3 Conclusion and Perspectives

A review of some of the features of the MTLM synthetic
turbulence approach have been presented. This proce-
dure is intended as an inexpensive method for generating
surrogate fields for numerical simulations. It is remark-
able that many nontrivial characteristics of turbulence
can still be reproduced when some of the physical pro-
cess involved have been simplified and split in this very
drastic way. Two of the key components of turbulence
are the self-distortion of the velocity field and the multi-
scale structure of the field. The first is provided in this
case by the Lagrangian map, while the second is explic-
itly introduced by the hierarchy of scales used. The con-
struction is essentially kinematical, while the enforcing of
the solenoidal condition introduces a pressure-like effect
that limits the compressive action of the mapping in the
regions of fluid elements convergence leading to the for-
mation of structures similar to vortex sheets. It has been
already shown that this kind of synthetic field produces
the correct time evolution when used as initial condition
in turbulence numerical simulations [6]. Current ongo-
ing work has as objective the extension of the method to
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Figure 11: PDF of the cosine of the angle between ω and
eigenvectors e(1) (dashed line), e(2) (solid line) and e(3)

(dashed-dotted line) of the strain-rate tensor

ERCOFTAC Bulletin 92 45



Figure 12: Joint PDF of normalized invariants Q∗ and
R∗

inhomogeneous anisotropic turbulence and the applica-
tion of the method for the generation of synthetic inlet
turbulence in spatially developing flows.
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Best Practice Guidelines for Computational 

Fluid Dynamics of Dispersed Multi-Phase 

Flows

Editors

Martin Sommerfeld, Berend van Wachem 

&

René Oliemans 

The simultaneous presence of several different phases in 

external or internal flows such as gas, liquid and solid is 

found in daily life, environment and numerous industrial 

processes. These types of flows are termed multiphase 

flows, which may exist in different forms depending on the 

phase distribution. Examples are gas-liquid transportation, 

crude oil recovery, circulating fluidized beds, sediment 

transport in rivers, pollutant transport in the atmosphere, 

cloud formation, fuel injection in engines, bubble column 

reactors and spray driers for food processing, to name only a 

few. As a result of the interaction between the different 

phases such flows are rather complicated and very difficult 

to describe theoretically. For the design and optimisation of 

such multiphase systems a detailed understanding of the 

interfacial transport phenomena is essential. For single-

phase flows Computational Fluid Dynamics (CFD) has 

already a long history and it is nowadays standard in the 

development of air-planes and cars using different 

commercially available CFD-tools. 

Due to the complex physics involved in multiphase flow the 

application of CFD in this area is rather young. These 

guidelines give a survey of the different methods being used 

for the numerical calculation of turbulent dispersed 

multiphase flows. The Best Practice Guideline (BPG) on 

Computational Dispersed Multiphase Flows is a follow-up 

of the previous ERCOFTAC BPG for Industrial CFD and 

should be used in combination with it. The potential users 

are researchers and engineers involved in projects requiring 

CFD of (wall-bounded) turbulent dispersed multiphase 

flows with bubbles, drops or particles. 
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Copies of the Best Practice Guidelines can be acquired 
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