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The Best Practice Guidelines (BPG) were commissioned by 
ERCOFTAC following an extensive consultation with 
European industry which revealed an urgent demand for such 
a document. The first edition was completed in January 2000 
and constitutes generic advice on how to carry out quality 
CFD calculations. The BPG therefore address mesh design; 
construction of numerical boundary conditions where 
problem data is uncertain; mesh and model sensitivity checks; 
distinction between numerical and turbulence model 
inadequacy; preliminary information regarding the limitations 
of turbulence models etc. The aim is to encourage a common 
best practice by virtue of which separate analyses of the same 
problem, using the same model physics, should produce 
consistent results. Input and advice was sought from a wide 
cross-section of CFD specialists, eminent academics, end-
users and, (particularly important) the leading commercial 
code vendors established in Europe. Thus, the final document 
can be considered to represent the consensus view of the 
European CFD community. 
Inevitably, the Guidelines cannot cover every aspect of CFD 
in detail. They are intended to offer roughly those 20% of the 
most important general rules of advice that cover roughly 
80% of the problems likely to be encountered. As such, they 
constitute essential information for the novice user and 
provide a basis for quality management and regulation of 
safety submissions which rely on CFD. Experience has also 
shown that they can often provide useful advice for the more 
experienced user. The technical content is limited to single-
phase, compressible and incompressible, steady and unsteady, 
turbulent and laminar flow with and without heat transfer. 
Versions which are customised to other aspects of CFD (the 
remaining 20% of problems) are planned for the future. 
The seven principle chapters of the document address 
numerical, convergence and round-off errors; turbulence 
modelling; application uncertainties; user errors; code errors; 
validation and sensitivity tests for CFD models and finally 
examples of the BPG applied in practice. In the first six of 
these, each of the different sources of error and uncertainty 
are examined and discussed, including references to 
important books, articles and reviews. Following the 
discussion sections, short simple bullet-point statements of 
advice are listed which provide clear guidance and are easily 
understandable without elaborate mathematics. As an 
illustrative example, an extract dealing with the use of 
turbulent wall functions is given below: 
� Check that the correct form of the wall function is being 

used to take into account the wall roughness. An 
equivalent roughness height and a modified multiplier in 
the law of the wall must be used. 

� Check the upper limit on y+. In the case of moderate 
Reynolds number, where the boundary layer only 
extends to y+ of 300 to 500, there is no chance of 
accurately resolving the boundary layer if the first 
integration point is placed at a location with the value of 
y+ of 100. 

� Check the lower limit of y+. In the commonly used 
applications of wall functions, the meshing should be 
arranged so that the values of y+ at all the wall-adjacent 
integration points is only slightly above the 
recommended lower limit given by the code developers, 
typically between 20 and 30 (the form usually assumed 
for the wall functions is not valid much below these 
values). This procedure offers the best chances to 
resolve the turbulent portion of the boundary layer. It 
should be noted that this criterion is impossible to satisfy 
close to separation or reattachment zones unless y+ is 
based upon y*. 

� Exercise care when calculating the flow using different 
schemes or different codes with wall functions on the 
same mesh. Cell centred schemes have their integration 
points at different locations in a mesh cell than cell 
vertex schemes. Thus the y+ value associated with a 
wall-adjacent cell differs according to which scheme is 
being used on the mesh. 

� Check the resolution of the boundary layer. If boundary 
layer effects are important, it is recommended that the 
resolution of the boundary layer is checked after the 
computation. This can be achieved by a plot of the ratio 
between the turbulent to the molecular viscosity, which 
is high inside the boundary layer. Adequate boundary 
layer resolution requires at least 8-10 points in the layer. 

All such statements of advice are gathered together at the end 
of the document to provide a ‘Best Practice Checklist’. The 
examples chapter provides detailed expositions of eight test 
cases each one calculated by a code vendor (viz FLUENT, 
AEA Technology, Computational Dynamics, NUMECA) or 
code developer (viz Electricité de France, CEA, British 
Energy) and each of which highlights one or more specific 
points of advice arising in the BPG. These test cases range 
from natural convection in a cavity through to flow in a low 
speed centrifugal compressor and in an internal combustion 
engine valve. 
Copies of the Best Practice Guidelines can be acquired from: 

ERCOFTAC ADO 
Chaussée de la Hulpe 189 Terhulpsesteenweg 
B-1170 Brussels 
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Multipoint Turbulence Structure and Modelling

Claude Cambon1

1Laboratoire de Mécanique des Fluides et d’Acoustique, UMR 5509,

Ecole Centrale de Lyon, 69134 Ecully Cedex, France.

The SIG 35 on ‘Multipoint Turbulence Structure & Mod-
elling’ (MPTSM hereinafter) was established in 2001, af-
ter a meeting reported by Godeferd, Cambon & Scott [6]
on two-point closures.
Fundamental issues and challenges of turbulence theory
and modelling are addressed, but we keep in mind prac-
tical modelling for engineering and environmental flows.
In this sense, a significant overlap exists with the SIG 15,
for instance with common interest in ‘structure-based
modelling’ (S. Kassinos and coworkers, C. Cambon and
coworkers, among others).
In addition, we continue to share an interest for a
global, dynamical, statistical and structural approach
to anisotropic flows, with and without rotation. From
stable stratification to unstable cases, for instance, new
recent elements suggest to consider, with the tools of
MPTSM, buoyancy-driven flows such as thermal convec-
tion and even Rayleigh-Taylor instability with transition
to turbulence. Collaboration with the CEA is particu-
larly encouraging, from spectral approaches (RDT, non-
linear closures, supported by high resolution DNS to-
wards LES) to engineering-oriented models, like ‘two-
structure–two-fluid–two-k–ε’ [12]. This theme is also im-
portant for the SIG 14 (J.M. Redondo) and the SIG 4
(P. Comte).
This foreword is organised as follows. Fundamental is-
sues and their possible applications are presented in Sec-
tion 1. The closure problem is revisited, in a broad sense,
in Section 2. New insights to anisotropic turbulence and
interactions are given in Section 3.

1 Fundamental aspects in turbu-
lence theory. Connections with
practical modelling?

Turbulence is almost ubiquitous in fluid motions, but
the recent development in related topics, especially from
a bit more than a decade, is rather surprising.
On one hand, a lot of publications, in a community close
to physicists, emphasize intermittency, or more precisely
‘internal intermittency’ at rather small scale. Space-time
intermittency is a concept easy to understand intuitively
by looking at a particular realization of the flow, but
its impact on statistically averaged quantities is possi-
bly complex, as well as its precise quantification from
such statistics. For instance, the departure of the Kol-
mogorov K41 scaling laws for structure functions, via the
so-called ‘anomalous exponents’, continue to be system-
atically and routinely attributed to ‘internal intermit-
tency’. This feeds an endless ‘industry’ of intermittency
corrections. As a single example, a conjecture is emerg-
ing about a law for nth-order structure function (rede-

fined more precisely in the next section) Sn(r) ∼ rn/2,
different from the K41 scaling Sn(r) ∼ rn/3, for rotating
turbulence, and intermittency is invoked, against the ev-
idence that anisotropy and related importance of inertial
wave-turbulence is probably a more physical explanation
for the ‘anomalous scaling’. More generally, the anoma-
lous exponents mix in an intricate way anisotropy, finite-
Reynolds number (FRN hereinafter) effect, and even in-
homogeneity, not to mention intermittency.
Going back to strictly homogeneous isotropic turbulence,
only for n = 3, the existence of the ‘exact’ 4/5 Kol-
mogorov law allows us to escape from intermittency cor-
rections. In fact, this law

S3(r) = −4/5εr, (1)

is an asymptotic law, which can be reached only at very
high Reynolds number, as evidenced by, e.g. Antonia &
Burattini (2006) [1], so that the departure of the com-
pensated third-order structure function from the ‘exact’
prefactor −4/5 suggests that important FRN corrections
be done. This also raises the question: why FRN is in-
voked at n = 3 for explaining a huge departure from
K41, and not at n �= 3?
On the other hand, several engineering and environmen-
tal studies, faced with the pressing need for practical
modelling, and benefitting from an increasing computa-
tional power, develop a smart combination of models, of-
ten hybrid, ranging from RANS to LES. At first glance,
the two communities, say ‘scaling and intermittency’ and
‘engineering’, are almost disconnected from each other.
A remarkable exception is the possible involvement of
second S2 and third-order S3 structure functions, at a
scale close to a mesh size, in refined subgrid-scale mod-
els for LES. Are there other points of contact? Is there
another approach to fundamental aspects of turbulence
in addition to the conventional present post-Kolmogorov
vulgate on ‘intermittency and scaling’? For instance, is
there a future for models and theories ranging from linear
‘Rapid Distortion Theory’ (RDT) to nonlinear ‘triadic’
closures from the legacy of Kraichnan and Orszag? The
last question is important if one considers the emphasis
on homogeneous anisotropic turbulence, obtained in a re-
cent book by Sagaut & Cambon [17] by generalizing and
combining such approaches, and the lack of interest for
that in the recent literature in fundamental turbulence.
We briefly review and compare very different techniques,
modelling methods and theories, in connection with the
following questions:

• Is Kolmogorov, K41 or K62, the ultimate recourse
for—at least phenomenological—turbulence theory?

• Has the concept of ‘two-point closures’ radically
changed in recent literature? Why ‘triadic’ closures,
carried out in Fourier space, are almost neglected,
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except in the domain of ‘weak’ wave-turbulence the-
ory?

• Why the role of pressure fluctuation is almost ig-
nored in recent literature on fundamentals? This
is illustrated by the emphasis on scalar variants of
the Kármán–Howarth equations, in which explicit
effects of pressure can be neglected, and implicit ef-
fects are often misunderestimated.
As an important exception, Lagrangian statistics for
particle acceleration are studied, in which the pres-
sure gradient is recognized as a leading term.

On the other hand, the correct treatment of pressure
fluctuations is in the core of linear RDT as well as in
nonlinear spectral triadic closures. Projection operators
used in Fourier space, and/or decomposition of velocity
and vorticity fields on solenoidal modes, allows the pres-
sure fluctuation to be exactly accounted for, and there-
fore removed from consideration as a dependent variable.
This is discussed in Section 2. Another instance of the
importance of modelling pressure fluctuations, via the
pressure Hessian, is given by the dynamical approach
to velocity gradients, in Section 2.3. Finally, there is
probably no need to recall the importance of modelling
pressure strain-rate correlation tensors in the equations
governing the full Reynolds stress tensor.

1.1 The legacy of Kolmogorov, K41 or
K62?

Emphasis is placed on structure functions, which involve
velocity differences between two points x and x+ r, de-
fined as

δu = u(x+ r, t)− u(x, t). (2)

Restricting our attention to pure HIT (Homogeneous
Isotropic Turbulence), structure functions of nth-order
are obtained by ensemble averaging products of incre-
ments, without specifying their orientation, so that

Sn(r) = 〈(δuL)n〉(r) (3)

is for instance the nth-order structure function, related
to longitudinal velocity increments—along vector r,—
which does not depend on the position x (statistical ho-
mogeneity), nor on the orientation of r, but only on its
modulus r (statistical isotropy). The time-dependence is
implicit, and only mentioned if needed.
K41 scaling amounts to a dependency only restricted to r
and to the dissipation rate ε, so that dimensional analysis
yields the well-known scaling

Sn(r) = Cn(εr)n/3, (4)

in which Cn can be considered as a universal constant.
Of course, this scaling laws are only valid in an ‘iner-
tial’ range of scales, with r typically larger than the Kol-
mogorov scale η and smaller than the largest scales—
typically an integral lengthscale,—which are affected by
instabilities, boundaries or any non-universal way of in-
jecting energy.
Following the proposal by Kolmogorov himself, or K62, a
departure from these K41 scaling laws displays ‘anoma-
lous exponents’ ζn, different from n/3 as follows:

Sn(r) ∼ rζn . (5)

The search for anomalous exponents, except for n = 3 re-
discussed in the next subsection, feeds a huge litterature,

centered around the concept of ‘internal intermittency in
the inertial range’. A non-conventional survey of this is-
sue, especially for n = 2 is offered by David McComb
in the present issue.
A controversy can occur because of the lack of rigorous
definition and quantification of ‘internal intermittency’,
and because exponents are often obtained from purely
empirical calculations or measurements, with huge error
bars (especially at large n !). On the other hand, a real
linkage of intermittency to such exponents can be sug-
gested from the following considerations :

• Passive scalar. A strong convexity of the curve of
anomalous exponents, with ζn << n/3 at increasing
n (n > 3), can be obtained in connection with a
very different way to fill the space by the passive
scalar—ramp structures?—compared to the velocity
field. In addition, a strongly non-Gaussian scalar
distribution can result from its transport by a purely
Gaussian velocity field, as shown by Kraichnan.

• ‘Burgulence’ extended to 2, 3 and 4 dimensions. If
the basic structures consist of shock waves, and not
of tangled vortex tubes (conventional incompressible
HIT), a flat distribution of anomalous exponents is
found, with ζn = constant if n > 3.

• An interfacial interpretation of turbulence. More
generally, if interactions of ‘turbulent’ structures
are really organised around layers, there is a pos-
sible analogy of internal intermittency with realistic
boundary intermittency. This also suggests a multi-
fractal organisation. Such a conjecture is partly sup-
ported by the paper by I. Eames, J.C.R. Hunt,
M. Braza, C.B. Da Silva & J. Westerweel in
the present issue.

1.2 Connections with statistical theory,
for second-order and third-order cor-
relations

Starting again with pure incompressible HIT, classical
Kolmogorov K41 scaling can be found at the second or-
der, in a similar way in physical space, for S2(r) and in
Fourier space, for the spherically averaged energy spec-
trum, E(k), as

S2(r) = C2 (εr)2/3 , E(k) = K0ε
2/3k−5/3. (6)

These laws are very robust, and can be found even at
moderate Reynolds number. In addition, the dispersion
of the Kolmogorov constant is very weak, as shown by
Sreenivasan [18], suggesting an almost universal value.
Things are very different at the order 3. It is gen-
erally said that the Kolmogorov four-fifth law, with
n = 3, C3 = −4/5, in Eq. (4) is the only exact equa-
tion in turbulence theory. It is important to say in addi-
tion that this law is an asymptotic law, reached in prac-
tice at very high Reynolds number, so that a huge FRN
effect has to be evaluated. The way to study the de-
parture from this law is informative, using equations in
both physical and Fourier space. The best way to model
the FRN effect in physical space is to use a variant of
the Kármán–Howarth equation, sometimes referred to
as ‘full Kolmogorov equation’ [8]:

S3(r, t) = −45εr + 6ν
∂S2

∂r
− 3

r4

∫ r

0
r

′4 ∂S2

∂t
dr′. (7)
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The counterpart of this equation in Fourier space is the
Lin equation:

∂

∂t
E(k, t) + 2νk2E(k, t) = T (k, t), (8)

in which the dissipation spectrum is readily derived and
the spectral transfer term T (k) holds for the contribution
of two-point cubic velocity correlations, as S3(r) does in
Eq. (7).

2 The concept of closure and the
hierarchy of theories and mod-
els

The use of variants of the Kármán–Howarth equation
for more a decade, as a generalisation of Eq. (7) to
anisotropic and inhomogeneous flows, can incorporate
a direct modelling of generalized unsteady two-point
second-order velocity correlations. In this sense, this
approach can illustrate an alternative way to address
two-point closures. On the other hand, techniques for-
merly [6] referred to as two-point closures or two-point
theories, developped in Fourier space from Kraichnan’s
and Orszag’s legacy, tackle the problem of cascade at the
level of three-point third-order dynamics: it is suggested
to call these approches triadic that rather two-point. We
cite here the more representative among many authors,
and the reader is referred to David McComb here, and
to [14] for a broader survey.

2.1 Single-point closures and beyond:
From RANS to structure-based
modelling

RANS models remain very useful for complex flows of
engineering and/or of environmental interest.
From the equation for the mean velocity field, it appears
that the gradient of the Reynolds stress tensor (RST)
〈uiuj〉 is the first information to be obtained. Several
models were proposed to close the equation which gov-
ern the full RST, following Launder, Lumley and many
others, with the additional transport equation for the
disipation rate. On the other hand, only the trace of
the RST is transported in a simpler k–ε model, so that
the nondimensional deviatoric part of the RSM, denoted
bij here, is directly—same time, same position—linked
to the mean velocity gradient 〈Aij〉 via a ‘turbulent ef-
fective viscosity’. The simplest ‘linear’ version of the
k–ε model utilizes kbij = −νt〈Aij + Aji〉, a so-called
Boussinesq approximation, whereas more complex alge-
braic linkage of bij to 〈Aij〉 is introduced in ‘nonlinear’
(nonlinear with respect to Aij) versions. These versions
can recover a level of information comparable to EARSM
(Explicitely Algebraic Stress Model.) Just recall that k–
ε model remains very popular because it is robust and
stabilizing for the numerical schemes, from the fact that
the gradient of the RST amounts to an additional effec-
tive dissipative term, with νt ∼ Cμk

2/ε. In counterpart,
Coriolis effects are completely missed by a ‘linear’ k–ε
model, which, for instance cannot reproduce the asym-
metry beween the ‘pressure side’ and the ‘suction side’
of a classical channel flow rotating around the spanwise
direction.
More generally, and even if nonlinear k–ε and RSM mod-
els predict the abovementioned asymmetry, the rotation

of the frame can question the principle of closure in any
RSM. This flaw was identified by Cambon, Jacquin and
Lubrano (1992, ref. in [17]), and, in a different way,
by Kassinos, Reynolds and coworkers (e.g. Kassinos,
Reynolds and Rogers, 2001, ref. in [17]). For instance, it
was shown that the ‘rapid’ pressure-strain rate tensor
in an homogeneous rotating shear flow contains more
information than the RST itself. Additional informa-
tion includes at least ‘dimensionality’ and ‘stropholysis’
tensors, whose local and intantaneous values are discon-
nected from the RST one. Advances in structure-based
modelling are given by Kassinos and Radhakrishnan
in the present issue.
The link from ‘structure-based modelling’ to linear and
nonlinear approaches developped by my team in Lyon is
rediscussed in Subsections 2.4 and 2.5.

2.2 Two-point approaches in physical
space

This approach can be illustrated by a simple use of
Eq. (7). For instance, Lindborg (1998, ref. in [20])
obtained a simple model for the FRN effect in rein-
jecting a conventional K41 model for S2(k, t), as in
Eq. (6) in which the time-variation of ε derives from
basic k–ε. This provides a satisfactory law as C3 =
maxr S3(r)/(εr) = 4/5 − 8.45R−2/3λ , at least for the
largest values of Rλ > 200. Refined corrections are
given in [1]. Finally, the full Kolmogorov equation,
possibly generalized—but often under a scalar form—to
anisotropic and inhomogeneous flows, can provide ad-
vanced subgrid-scale modelling in a channel, e.g. [4].
Assuming very large Reynolds numbers, another large
part of the literature is devoted to a slight generalization
of the asymptotic Kolmogorov law C3 = −4/5 in various
flows, with MHD, compressibility, not to mention mixed
scalar-velocity third-order structure functions, following
Yaglom variants of Eq. (7).
Finally, going back to studies in engineering, two-point,
and even two-time, closures directly carried out in physi-
cal space, are illustrated by exponential relaxation mod-
els (e.g. studies at PPRIME, Poitiers, France). This
yield a direct linkage of two-point and/or two-time
second-order velocity correlations to their single-point
value, using an exponential or Gaussian factor.

2.3 Transport of increments and gradi-
ents, tetrads

This is a very promising approach, in which closures
and stochastic models are proposed for the full veloc-
ity gradient Aij . In dedicated transport equations, is
considered a coarse-grained Aij , and not its Reynolds
(ensemble) average precedently denoted 〈Aij〉. In addi-
tion, a Lagrangian approach is performed, by A. Naso,
A. Pumir, F.S. Godeferd & C. Cambon in the
present issue. The modelling of the pressure Hessian
is the main difficulty.

2.4 Recent avatars of ‘Rapid Distortion
Theory’, from rotating shear to ac-
cretion disks

As in the recent book [17], we consider essentially
homogeneous RDT, or the linear response of ‘homo-
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geneous’ turbulence to space-uniform mean velocity—
and/or density—gradients, and/or body forces consis-
tent with statistical homogeneity for the fluctuations.
RDT is useful for improving the modelling of the ‘rapid’
pressure-strain rate tensor in RSM, and the develop-
ment of structure-based modelling, beyond the RSM, was
partly motivated by reproducing RDT. It is important
to point out that the general approach which underlies
RDT is more general, with implication on stability the-
ory, as discussed below. Even if restricted to the effect
of the pure plane mean shear flow, the study by Mof-
fatt (1967) [15] included all the characteristics of modern
RDT.
Technically, the starting point of the search for linear
response uses a base flow with space-uniform velocity
gradients, Aij , possibly space-uniform density gradients
(for application to density-stratified flows) and uniform
external magnetic field (for MHD applications), with ad-
ditional body forces, Coriolis, buoyancy, Lorentz. The
base flow, in the sense of stability analysis, is the mean
flow consistent with statistical homogeneity of fluctua-
tions, and must be a particular solution of Euler equa-
tions. This condition is called ‘admissibility condition’
by A.C.C. Craik, and it results from the absence of feed-
back from the RST (the RST is space-uniform by virtue
of statistical homogeneity) and absence of dissipation in
the equation for the mean. The disturbance flow can be
expressed in terms of advected Fourier modes with time-
dependent wavevector, sometime called Kelvin modes in
the community of stability analysis. Fourier space is an
invaluable tool for solving the pressure disturbance, and
the advection term, in addition, can be solved along char-
acteristics lines in Fourier space, very close to base (or
mean) trajectories in physical space. For instance, for
a purely incompressible homogeneous velocity field sub-
jected to the base flow given by Aij , basic inviscid linear
equations for both the wave vector k and the correspond-
ing Fourier component of the velocity field, u(k, t) are

k̇i = −Ajikj , ˙̂ui +
(
δin − 2kikn/k2

)
Anj︸ ︷︷ ︸

Mij

ûj = 0. (9)

Solutions are simply obtained as

ki = F−1ji (t, t0)Kj , (10a)
ûi(k(t), t) = Gij(k, t, t0)ûj(K, t0). (10b)

In the previous equations, Fij = ∂xi/∂Xj is the dis-
placement gradient, or Cauchy matrix (see also Naso
et al. in the present issue,) which can be obtained by
time-exponentiation of the gradient matrix Aij , and X
denotes the Lagrangian coordinates following the trajec-
tories of the base flow. Mean trajectories are given here
by

xi = Fij(t, t0)Xj , (11)
so that the characteristic curves in Fourier space corre-
spond to a conservation of the phase x·k = X·K of
the advected Fourier mode. The linear Green’s function
Gij(k, t, t0) generates all the information for the related
linear stability analysis, but also for the statistical RDT
prediction. It is deterministic, because possible random-
ness is only introduced by initial data in the linear initial
value problem given by Eq. (9). Recent progress in RDT
are illustrated by A. Pieri, C. Cambon, F.S. Gode-
ferd, A. Salhi, and T. Lehner in the present issue,
with comparison to full DNS.
Note that the Kassinos’s ‘Particle representation model’
is based of equations close to (Eq. (9)), if one interprets

the time-dependent wave-vector k(t) as the ‘gradient vec-
tor’ N in Kassinos et al. (2001). The term kikn/k

2 in
Eq. (9) reflects the contribution from fluctuating pres-
sure, which is exactly solved.
In addition to the formal rediscovery of RDT by, e.g.
Bayly and Craik, with its impact on the ‘elliptical flow
instability’ from 1986, we can notice new developments
in astrophysics, especially for rotating accretion discs.
For instance, the ‘shearing sheet approximation’, redis-
cussed in Pieri et al. continues the analysis of the ro-
tating pure plane shear, and yields shifting the interest
of RDT and DNS from an engineering—e.g. channels
in turbomachinery—context to an astrophysical one. It
is also worthwhile to mention that the extension of lin-
ear RDT towards nonlinear pseudo-spectral DNS was
obtained by Rogallo (1981, ref in [17]) using a comov-
ing frame with variables denoted here X and K in
eqs. (Eq. (10)) and (Eq. (11)). The same procedure,
applied by Lesur [9] to the shearing box approximation is
now used by a very large astrophysical community.
Finally, RDT operators for random flow realizations can
be incorporated in KS (Kinematic Simulation), with ap-
plication to Lagrangian diffusion [2]. This theme will be
addressed in the next issue devoted to Synthetic Turbu-
lence Models (SIG 42, F. Nicolleau). It is touched upon
in the present issue, however, in Naso et al. and in
Pieri et al..

2.5 The legacy of Kraichnan and Orszag:
Three-point, or triadic, approaches

Generalized RDT shows the interest of exactly solving
the contribution of fluctuating pressure. This is linked
to the fact that linear terms in the equation governing
the fluctuating velocity are not divergence-free, so that
the pressure gradient has to exactly balance their dilata-
tional part. This is done in Fourier space by using alge-
braic projection operators, as illustrated by the matrix
Mij in Eq. (9): part (δin − kikn/k

2)Anj ûj corresponds
to the solenoidal, or divergence-free, contribution of the
deformation term Aijuj in physical space, whereas part
−(kikn/k2)Anj ûj corresponds to the contribution of the
advection term Ajnxn∂ui/∂xj . In the same way, the
nonlinear advection term is not divergencefree, so that
the basic Navier-Stokes equation writes(

∂

∂t
+ νk2

)
û(k, t) = Pω̂ × u, (12)

in which P, Pij = δij−kikj/k
2, holds for the above men-

tioned projection operator, and the nonlinear advection
term is chosen in connection with the Lamb vector, or
vectoral product of vorticity by velocity. More symmet-
ric expressions, in terms of ûiuj , can be used as well.
Of course, the Fourier transform of a product yields a
convolution product, so that we have to consider the
triadic nonlocal structure of ω̂ × u, in terms of û and
ω̂ = ık × u, but the advantage of solving the pressure
once for all, not to mention the algebraic counterpart of
Biot-Savart equation, is essential.

2.5.1 HIT, a reminder

The most general closure approach, mainly used for HIT,
deals with the hierarchy of moment equations. Because
of the quadratic nonlinearity of Navier-Stokes equations,
the equation that governs the second-order velocity cor-
relations displays triple correlations, the equations for
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triple correlations display fourth-order correlations, and
so on. In addition, and this is less known, the pres-
sure fluctuation is exactly solved in connection with the
divergence-free property of any realization of the veloc-
ity field, only if nth-order correlations are taken at n
distinct points in physical space, which give n− 1 sepa-
ration vectors when homogeneity is invoked, or a set of
n− 1 independent wave vectors in Fourier space.
At order 2, one recovers that two-point second-order ve-
locity correlations are generated by E(k), and the Lin
equation (Eq. (8)) displays the spectral transfer term
T (k), which corresponds to the contribution of two-point
third-order correlations. A similar relationship is found
in physical space, as illustrated by Eq. (7) here, but
integro-differential equations are needed to link different
components of two-point second-order correlations, as
the longitudinal and transverse self-correlations, whereas
all these correlations can be expressed in terms of E by
a single integral.
At order 3, the dynamical equation that governs triple
correlations has to be taken at three points. A complete
approach in physical space is not available, in spite of
advanced equations and discussions by Batchelor, Craya
(1958) and in Davidson’s book. For instance, there is a
direct link between the spectral transfer term T (k) and
the scalar function K(r), defined by Batchelor, as shown
by , e.g. Tchoufag et al. (2011) [20], and the equation
for K(r) is given and discussed by Davidson. On the
other hand, the counterpart of the equation which gov-
erns triple correlations at three points is only given in
Fourier space, under a form in which pressure contribu-
tions are exactly solved, by means of projection opra-
tors. For instance, T (k) is related to the three-point
third-order spectral tensor by

T (k) =
∫∫∫

kiSinn(k,p)d3p, (13)

in which Sijk is defined by

〈ûi(q)ûn(k)ûm(p)〉 = Sinm(k,p)δ3(k + p+ q), (14)

and is governed by the dynamical equation(
∂

∂t
+ ν(k2 + p2 + q2)

)
Sinm(k,p, t) = T IVinm(k,p, t),

(15)
in which q = −k − p and T IV holds for contribution of
fourth-order correlations at three points, with their exact
‘corrections for pressure’ terms. This level of description
offers the best opportunity to introduce a robust closure,
such as the EDQN one

T IVinm(k,p, t) = TQNinm(k,p, t)
− (η(k, t) + η(p, t) + η(q, t))Sinm(k,p, t). (16)

The dominant term is the quasi-normal one, TQN , which
amounts to rewrite T IV in terms of a sum of products
of second-order correlation tensors, as for a normal law.
The correction term, in the second line, therefore cor-
responds to the contribution of fourth-order cumulants,
which are modelled as a relaxation term to reinforce the
dissipative effect in Eq. (15), following heuristic argu-
ments.
The reader is referred to specialized literature for more
details on EDQNM, and more generally, on the ‘tradic’
approach in HIT [14]. An interesting and original insight
to this approach is given by W. Bos and R. Rubin-
stein in the present issue.

We have now all the elements at hand to distinguish the
two-point approach in subsection 2.2 from the ‘tradic’
one. In spite of the close connection between the
Kármán–Howarth equation, or its variant in Eq. (7), and
the Lin equation, their use is very different. Models for
second-order correlations, e.g. for S2(r, t), yield immedi-
ately a model for S3(r, t) using the ‘Kármán–Howarth’
way. On the other hand, an elaborated closure of T (k, t)
in terms of E(k′, t) is first applied, before solving the Lin
equation, and this closure is really introduced at the level
of the dynamical equation for third-order correlation at
three-points, such as eqs. (Eq. (15)) and (Eq. (16)) here.
This difference is illustrated by Tchoufag et al. [20] for
the search of FRN correction to the 4/5 Kolmogorov law;
one can mention below two simple examples:
i) Cancellation of both dissipative and unsteady terms
in Eq. (7) immediately yield the 4/5 Kolmogorov law.
The same procedure applied to the Lin equation yields
the unsatisfactory result T = 0. It can be shown that
the recovery of the asymptotic 4/5 law in Fourier space
is found in separating the spectral domain according to
the sign of the transfer term: for small ks, where the
transfer is negative and corresponds to a sink of energy,
the dissipation spectrum can be neglected but not the
unsteadiness; integration of the inviscid Lin equation re-
stricted to this domain yields dk/dt = −εf (with k the
kinetic energy, k is the wavenumber almost everywhere
here), in which εf is the flux from the smallest scales
(see also McComb); for the other domain of large k’s,
unsteadiness can be neglected but not the dissipation
spectrum, so that T (k) ∼ 2νk2E(k), and integration in
this domain gives the spectral balance εf = ε.
ii) Injecting Eq. (6) for E(k, t) and using a k–ε model
for its time-variation from ε(t) gives only an evaluation
of the zero of the transfer term and its behaviour close
to this point but not at all a relevant model for T (k, t)
in a large spectral domain.
It is clear that ‘triadic’ closures are much more complex
than ‘two-point closures using the Kármán–Howarth
way’, but they include much more information and they
are easier to extend towards anisotropic flows, general-
izing both RDT and ‘tradic closures for HIT’. On the
other hand, we have mentioned that ‘two-point closures’
in physical space are simpler, more flexible and can easily
relax a too strict assumption of statistical homogeneity:
This is rediscussed in subsection 3.2.

2.5.2 Principle for easy generalisation to
anisotropic turbulence

It is clear that the fully tensorial, with full wavevectors
relationship in Eq. (16) is valid for arbitrary anisotropic
turbulence. This is particularly true for the quasi-normal
term, or SQNinm, which is exactly expressed in terms of the
second order spectral tensor R̂ij(k′, t); isotropy is used in
basic EDQNM for HIT for deriving the final closure for
T (k, t), derived from Simn, in terms of E(k′, t), derived
from the second order spectral tensor R̂ij . Even if an
anisotropic form of the fourth-order cumulant relaxation
term is possible, it is better to firstly incorporate in the
closure method the ‘true’ linear term responsible for the
anisotropisation, such as the matrix Mij in Eq. (9).
We have developed for a long time an original procedure
for inverting the anisotropic ‘true’ linear operators in
equations for cubic moments. This allows us to base the
closure on a zeroth-order Kraichnan’s response function,
which is actually the RDT exact linear Green’s function,
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as in Eq. (10). In this sense, we generalize EDQNM, but
also we incorporate more general concepts coming from
DIA, but in byppassing the strenuous procedure of cou-
pled equations for the response tensor and the two-time
second-order spectral tensor. Note that our procedure can
easily incorporate the RDT for cubic correlations, as well
as the asymptotic limit of ‘weak’ wave-turbulence theory,
when three-wave resonance is permitted by the dispersion
law.
Before presenting more dedicated studies, for rotating,
stratified and/or MHD anisotropic flows, one can say a
few words about the fully anisotropic form of the second-
order spectral tensor, and use of generalized Lin equa-
tions.
The divergence-free condition is an algebraic one in
Fourier space, or k·û = 0. Accordingly, the Fourier
component has only two components in a local, right-
handed and orthonormal, frame of reference attached to
the wave vector k, often called Craya-Herring frame in
the turbulence community, so that

û = u(1)e(1)(k) + u(2)e(2)(k)︸ ︷︷ ︸
solenoidal

+ u(3)︸︷︷︸
dil.=0

k

k
.

This frame of reference (e(1)(k), e(2)(k),k/k) is the
classical parallel / meridional /radial frame in a sys-
tem of polar-spherical coordinates for k. In the latter
equation, the first two terms correspond to a toroidal-
poloidal decomposition in physical space, both giving the
solenoidal (divergence-free) part of the velocity field in
the Helmholtz decomposition (see details and definition
of e(1), e(2) in [17].)
Note that a similar decomposition (e.g. Yi Li, private)
can be applied in physical space, for instance for the
fluctuating velocity increment, using the same frame of
reference with respect to the separating vector r, or

δu = (δu)1e(1)(r) + (δu)2e(2)(r)︸ ︷︷ ︸
(δu)T

+(δu)L
r

r
,

displaying transverse (subscript ‘T’) and longitudinal
(subscript ‘L’) increments. A similar decomposition in
terms of cylindrical coordinates (Lindborg 1996) is much
less convenient. The difference is that the Fourier com-
ponent is really two-component in Fourier space for ar-
bitrary anisotropy, whereas a similar claim by Lindborg
that the velocity increment is ‘dyadic’ in structure func-
tions, is simply wrong, even for axisymmetric turbulence.
The two-component character of the velocity Fourier vec-
tor yields drastic simplifications for statistical spectral
tensors. The second-order spectral tensor R̂ij , which is
given by correlating ûi(k, t) and the conjugate of ûj(k, t)
at the same wavevector, can be expressed in terms of four
pseudo-scalar terms for arbitrary anisotropy. This can be
seen from a classical trace-deviator decomposition, but
restricted to the plane normal to k, or

R̂ij = e(k, t)Pij + R̂
(pol)
ij + R̂

(hel)
ij ,

with e = (1/2)R̂nn. The deviatoric part, or R̂ij −
(1/2)R̂nnPij , is exactly split into a real part, which is
generated by a complex valued scalar Z, related to the
polarization of the spectral energy, and a purely imag-
inary part, which is generated by the helicity spectrum
H(k, t). Note that all generating scalars, e, Z and H
can depend on the full wavevector k, even if simplified

forms exist for axisymetric turbulence, with and with-
out mirror symmetry. As a consequence, the fully 3D
energy spectrum e(k) does not coincide in general with
its spherically averaged part E(k)/(4πk2), the difference
describing a ‘directional’ anisotropy, which is reflected,
as the first nontrivial spherical harmonic, by the dimen-
sionality tensor. Finally, the real part of the second-order
spectral tensor is split into three terms

R̂ij =
E(k, t)
4πk2

Pij︸ ︷︷ ︸
(iso)

+
(
e(k, t)− E(k, t)

4πk2

)
Pij︸ ︷︷ ︸

(dir)

+R̂
(pol)
ij ,

which characterize successively a purely isotropic part
(iso), a contribution (dir) from directional anisotropy,
and a contribution (pol) from polarization anisotropy. It
has been shown (e.g. in [17]) that all structure tensors
introduced by Kassinos and Reynolds are a byproduct
of this decomposition, so that for instance bij = b

(dir)
ij +

b
(pol)
ij , dij = −2b(dir)ij , fij = b

(dir)
ij − b

(pol)
ij in Kassinos

and Radhakrishnan.
From a dynamical viewpoint, general equations for R̂ij ,
obtained by combining the linear ‘RDT’ part in (Eq. (9))
and the nonlinear and viscous part in eq(Eq. (12)) are
equivalent to coupled Lin equations in terms of e, Z,
and H. Exact equations in the case of homogeneous
turbulence subjected to mean velocity gradient Aij and
in a rotating frame are given in Salhi et al. [16] and
Cambon et al. [3], whereas the case of purely rotating,
stratified, and quasi-static MHD, is detailed in this issue
by Godeferd et al.

3 New insights to turbulence, es-
sentially anisotropic, and inter-
actions

3.1 Studies in collaboration within the
ANISO ANR project

Anisotropy is a very important characteristic of turbu-
lent flows, but often its statistical description is restricted
to the RST anisotropy, with for instance an intensive use
of the Lumley’s invariant map. It is clear that more infor-
mation is needed, for instance about the dimensionality,
either using the structure-based modelling or the system-
atic splitting of anisotropy descriptors in terms of ‘di-
rectional anisotropy’ and ‘polarisation anisotropy’. The
general approach in Fourier space presented here allows
us to recover such a structure-based modelling, and give
a deeper scale-to-scale and even angle-to-angle analysis
of anisotropic flow structure. A systematic description
of anisotropy is proposed for structure functions, based
on the SO(3) symmetry group (e.g. Arad et al., Biferale,
Proccaccia and coworkers), but this results in identify-
ing only the first angular harmonics in practice, and this
is disconnected from dynamical equations. A system-
atic comparison of anisotropic description is in progress,
both in physical space and in Fourier space, supported
by a contract (ANR, Agence Nationale de la Recherche),
and a Summer School, also supported by ERCOFTAC,
just took place on this topic (Morphology and dynamics
of anisotropic flows, Cargese, Corsica, July 18-29 2011).
The approach directly carried out in physical space, es-
pecially in the CORIA, is based on an axisymmetric and
inhomogeneous generalization of Eq. (7), with various
application to jets and wakes.
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3.2 Dynamics of interfaces

Interfaces separate turbulent and laminar areas at the
edge of jets, plumes and wakes, and they largely control
the global features of these flows, such as entrainment.
To what extent are similar mechanisms—acting in the
periphery of vortices and between fluid volumes of differ-
ent properties—reflected in global aspects of turbulence?
New insights on this topic are given by Eames et al.,
using new diagnostic tools and suggesting new modelling
methods. We have already mentioned the possibility to
revisit the concept of ‘internal intermittency’ in closer
connection with such dynamics of interfaces. This intro-
duces the multifractal approach as well. At first glance,
the general emphasis on quasi-homogeneous turbulence
given in my present survey is almost disconnected from
a very local analysis including intermittency. On the
other hand, the study of turbulence driven by buoyancy
and started with Rayleigh-Taylor instability, gives a very
good opportunity to reconcile the different viewpoints, as
said in the very beginning of this paper.

3.3 Turbulence and coupled fields with
and without rotation

This topic is illustrated by R.P.J. Kunnen,
H.J.H. Clercx and B. Geurts in the present
issue, with ‘Turbulent rotating convection:
desktop geophysics.’ Thermal convection induces
a buoyancy-driven energy production, and the flow
is reorganized in columnar structures by dominant
rotation.
Emphasis on flows with Coriolis force and/or with buoy-
ancy force, is also considered in ‘cases without produc-
tion’. The simple scheme inherited from Kolmogorov is
that energy, injected at large scale, and dissipated at
small scale, has just a constant flux in an extended in-
ertial range. It is assumed in addition that the inertial
range can be described by HIT, even if energy is injected
in an anisotropic and even inhomogeneous way. This
scheme can be radically questionned for turbulence sub-
jected to anisotropic body forces, in which there is no
direct injection of energy, so that one can consider such
flows as ‘without production’. The first example is ro-
tating turbulence, in which the Coriolis force produces
no energy, but deeply alters the cascade via its impact
on cubic velocity correlations. Anisotropy can penetrate
deeply in the inertial range, and even can affect more
the inertial scales than the largest scales, as confirmed
very recently by experimental results [11]. Another ex-
ample is the stably-stratified turbulence, if one considers
that there is no production of total, kinetic + potential
energy. MHD turbulence gives a third example, con-
sidering kinetic + magnetic energy. The specificity of
our studies, with respect to existing litterature, is sum-
marized in F.S. Godeferd, C. Cambon, B. Favier
and A. Delache in this issue, for these three cases.
All these studies combine pseudo-spectral DNS, with an
original post-processing dedicated to a refined scale-to-
scale and angle-to-angle description of anisotropy, and a
recourse to axisymmetric EDQNM, for Reynolds num-
bers far beyond the DNS limits, with a detailed cross-
comparison EDQNM/DNS at moderate Reynolds num-
ber. Promising applications deal with plasmas and su-
perfluids (see, e.g. Tchoufag & Sagaut, 2010 [19], for an
application of EDQNM to the latter topic).

4 Conclusions

Eight articles will follow in the present issue:

• Kolmogorov’s theory: K41 or K62, by W.D. Mc-
Comb,

• Interfaces in turbulence and implications for ad-
vanced modeling methods, by I. Eames et al.,

• Advances in structure-based modeling, by
S.C. Kassinos & H. Radhakrishnan,

• Modelling approach to velocity and scalar gradients
and increments, by A. Naso et al.,

• Advances in RDT and DNS for coupled effects of
shear, rotation and stratification, by A. Pieri et al.,

• Statistical theories of turbulence: Non-gaussianity
and coherence, by W.J.T. Bos & R. Rubinstein,

• Turbulent rotating convection: desktop geophysics,
by R.P.J. Kunnen et al.,

• Axisymmetric theory and DNS in rotating, strati-
fied, and MHD turbulence, by F.S. Godeferd et al..

We have not surveyed important issues in Lagrangian
turbulent diffusion, nor in high speed compressible
flows, which are in the domain of our SIG, in addition
to SIG 42 and SIG 4. Finally, investigation of the
infrared limit has important consequences for practical
turbulence models (e.g. [13]), and this merits to be
generalized towards anisotropic turbulence with inter-
actions, in the future activities of our SIG. Finally,
promising applications of ‘Crayalets’ [5] will be investi-
gated as an extension of the domain of wavelets to the
general toroidal / poloidal (or Craya in Fourier space)
decomposition extensively used here.

Careful rereading of this foreword by Antoine LLor and
Ian Eames is gratefully acknowledged.
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Abstract

From a critical review of the subject, we infer that con-
cerns about the effect on the K41 picture of internal
intermittency, problems with averages, anomalous expo-
nents, and vortex stretching, may be without founda-
tion. Furthermore, research by various workers over the
last two decades strongly suggests that deviations of S2
(or E(k)) from the K41 result are due to the effects of
finite viscosity. We conclude that K41 is probably cor-
rect, but that this matter will ultimately be settled by
direct numerical simulation. We conjecture that the K41
picture works better in wavenumber space, rather than
scale space, due to the large number of degrees of free-
dom, random phase effects and, not least, the presence
of a cascade.

1 Introduction

In this article we restrict our attention to homogeneous,
isotropic turbulence (HIT). In this way, we rule out ef-
fects due to mean shear, system rotation, density strat-
ification, and so on. This leaves us with a stark choice:
deviations from Kolmogorov’s predictions for the energy
spectrum (or second-order structure function) must be
due either to the Reynolds number being finite (K41 is
based on an assumption of very large Reynolds num-
bers) or to the effects of internal intermittency, as was
suggested later on, by Kolmogorov, in 1962.
Over the last few decades a veritable industry has grown
up, based on the search for so-called intermittency cor-
rections. Currently it is dominated by multi-scale or
multifractal models of turbulence. This activity finds
a sympathetic audience, because many people seem to
see the K41 picture as being counter-intuitive, when one
considers aspects of turbulence such as vortex-stretching,
localness, intermittency and the taking of averages.
Running counter to this belief in ‘intermittency correc-
tions’ (or, increasingly, ‘anomalous exponents’) which
has been dominant in recent times, there is a growing
view [1]- [7] that K41 is an asymptotic theory, valid in
the limit of infinite Reynolds number. In this school of
thought, any deviations from K41 are due to finite vis-
cosity.
As a result, opinion in the turbulence community is
deeply divided on this fundamental issue.
Here we will begin by considering the various criticisms
of, or sources of unease about, K41. This is followed by a
discussion of the various theories which advocate finite-
viscosity effects in explaining deviations from K41. We
conclude with a brief discussion of the situation.

2 Criticism of Kolmogorov’s 1941
theory

As is well known, in 1941, Kolmogorov [8, 9] gave two
different derivations of his now-famous result for the
second-order structure function:

S2 = Cε2/3r2/3, (1)
for L > r > l, where l is a measure of the scale at which
viscous effects begin to dominate (i.e. the internal scale),
L is a measure of the large scales of the system (i.e. the
external scale) and the prefactor takes the value C � 2.
As is equally well known, the corresponding result for
the energy spectrum in wavenumber is

E(k) = αε2/3k−5/3, (2)
where the prefactor α is widely known as the Kolmogorov
constant and takes a value of about α = 1.6.
Shortly after this work was published, it was criticised
by Landau (see the footnote on page 126 of [10]). Kol-
mogorov [11] interpreted this criticism as a need to treat
the dissipation rate as a variable; and, working with its
average taken over a sphere of radius r, concluded that
the right hand side of Eq. (1) should be multiplied by a
factor (L/r)μ, where μ is often referred to nowadays as
an intermittency correction.
That development gave rise to further attempts by other
workers to obtain a value for μ. As a result, for many
years K41 has had a question mark hanging over its sta-
tus as a theory of inertial-range turbulence. We will find
it convenient to classify criticisms of the Kolmogorov
(1941) theory under four main headings, thus: the ef-
fect of internal intermittency; problems with averages;
anomalous exponents; and the difficulty of interpreting
vortex stretching as a local cascade. As we discuss these
in turn, it will be apparent, these groupings are by no
means mutually exclusive.

2.1 The effect of internal intermittency

We do not intend to examine the relationship between
the Kolmogorov-Obukkov proposal of [11] and the fa-
mous footnote in the book by Landau and Lifshitz [10].
This is a well known conundrum and, apart from point-
ing out that Landau and Lifshitz inconsistently use the
symbol ε to denote both a mean dissipation (main part of
the page) and an instantaneous dissipation (in the foot-
note), we shall leave this matter alone. The important
fact is that Kolmogorov [11] amended his original the-
ory to take account of the spatial intermittency1 of the

1. Although the word ‘intermittency’ does not actually appear
in his paper.
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instantaneous dissipation rate ε̂.
The intermittency concerned was first pointed out by
Batchelor and Townsend [12], and used to be referred to
as ‘fine-scale’ or ‘small-scale intermittency’. Nowadays it
seems to be more usual to call it ‘internal intermittency’.
In any case, it should be distinguished from the inter-
mittency associated with a free edge of unconfined shear
flows or with the ‘bursting process’ in duct flows. In both
these cases, intermittency is associated with structure,
which exists in some average sense. Due to the restric-
tive symmetries, it is impossible for structure to exist in
HIT in anything other than an instantaneous sense.
There seem to be two crucial difficulties with the idea
that the existence of spatial intermittency implies the
need for some corrections to the Kolmogorov (1941) the-
ory. These are as follows:

1. The dissipation rate is not the relevant quantity for
K41A. The relevant quatity is the inertial flux of
energy. The use of the same symbol ε (and even the
same terminology!) for both these quantities may
have caused some confusion. It is for this reason that
we have introduced εT for flux and εD for dissipation
rate [7].

2. Internal intermittency is a phenomenon associated
with a single realization. it must necessarily ‘av-
erage out’; or, in other words, disappear, under
any global averaging operation. It is not immedi-
ately obvious that its existence it will affect relation-
ships between globally-averaged quantities. In the
case of K41B, Kolmogorov’s starting point was the
Karman-Howarth equation and of course this equa-
tion is ensemble-averaged and contains the mean
rate of dissipation. This fact was recognised in K62,
where it was stated that the ‘4/5’ law for S3(r) was
unaffected by the process of locally averaging the
instantaneous dissipation rate ε̂ over a sphere of ra-
dius r. The significant new element in that work
was the introduction of an ad hoc expression for the
skewness and the abandonment of the assumption
of constant skewness, as made in K41B.

However, despite the lack of any obvious causal factor,
the use of the term ‘intermittency corrections’ became
quite widespread. By 1990, the exponent μ was widely
referred to as the intermittency exponent: see [13]. And
evidently this usage persisted: see, for example, the re-
view by Sreenivasan [14]. More recently the term anoma-
lous exponents has become popular.

2.2 Cascade or vortex stretching?

The idea of a cascade, as believed to underpin the Kol-
mogorov picture, is often seen to be incompatible with
the vortex-stretching behaviour of turbulence (e.g. see
[15], [16]). In order to examine this proposition, we need
to understand the meaning of both these terms and in-
deed how they relate to the Kolmogorov theories.
The term ‘cascade’ is used to describe a process in which
energy is transferred from large scales to small scales.
However, there is no cascade in real space. This is be-
cause there is no inertial flux: the Karman-Howarth
equation is a local energy balance2, taken at a position x
or a scale r. Of course, in shear flows, the inhomogene-
ity leads to a flux of energy from where it is produced to
where it is dissipated. But in HIT no such flux exists.
Good discussions of this topic may be found in the books

by Tsinober [17] and that of Sagaut and Cambon [18]
(who cite the first edition of Tsinober’s book).
How then does all this affect K41A and K41B, both of
which were formulated in real space? Taking them in
reverse order, K41B does not rely on a cascade. It relies
on the vanishing of the viscous term in the Karman-
Howarth equation when one takes the limit of infinite
Reynolds numbers at constant dissipation rate. Also,
bearing in mind the local nature of the Karman-Howarth
equation, one may also apply a suitably chosen stirring
force, such that its effects are confined to scales greater
than some input scale rI . Then the energy balance ap-
plies to an inertial range of scales where the detailed
effects of dissipation and forcing are not felt. This sepa-
ration of input (or energy-containing) scales from viscous
dissipation scales offers a sort of intuitive basis for K41A,
which is actually no more than a dimensional analysis.
Or, K41A could be based on some intuitive decomposi-
tion of scales which may be thought of as a conjugate to
the Fourier representation. Further discussion of scale-
space formulations, as analogous to wave-number space
formulations, may be found in the book by Davidson [19].
And for some comments on the effect of decomposition
on scale-space behaviour, see p133 in [17].
It is generally understood that turbulence is charac-
terised by various processes involving vortical structures,
in which the vorticity increases with time in ways that we
tend to associate with vortex stretching. One can think
of a vortex tube being stretched by a velocity gradient,
and in the process, conservation of angular momentum
ensuring that the associated kinetic energy is concen-
trated in ever-smaller regions of space.
In the past, various models have been proposed to de-
scribe this process and these include arrays of tubes,
plane vortex sheets,and so on. Naturally in each case,
analytical tractability is a prime consideration in choos-
ing the model. A brief introduction to such methods
may be found in [13]. However, in recent years it has
become clear, from numerical simulations of HIT, that
surfaces of constant vorticity tend to take the form of
randomly-coiling worm-like structures.
When we seek to confront the cascade picture with the
vortex-stretching picture, the difficulty in so doing is two-
fold. First, the cascade is in wavenumber space, whereas
the vortex structures are in real space. Second, the cas-
cade is an ensemble-averaged process, whereas the vortex
structure is an instantaneous phenomenon. It is char-
acteristic of a single realization and may be eliminated
by averaging. Nevertheless, it is still possible, in very
general terms, to identify some apparent inconsistency
between the two pictures, as follows.
Granted that the cascade describes the transfer of energy
from small wavenumbers to large; and intuitively associ-
ating the corresponding ‘scales’ with the reciprocal of the
wavenumbers, one can see two difficulties in reconciling
the two processes [15], [16]. These are:

1. When a vortex tube is drawn out in space, the length
scale of the extensional field may be expected to be
much larger than the diameter of the extended tube.
This is not immmediately compatible with the idea
of localness of a cascade.

2. When a vortex tube, or any comparable vortical

2. This is not the case for the Navier-Stokes equation, where the
pressure term is known to be non-local in real space. But the NSE
describes momentum transfer in a single realization, not ensemble-
averaged energy transfer.
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structure, is stretched, at least one dimension of
the structure remains large (when compared to the
cross-section) and thus does not appear to support
the idea of transfer to a larger wavenumber (i.e.
smaller scales).

We can offer counter arguments to both these points.
But before doing so, let us enter a caveat. This to the
effect that we should not rely too heavily on intuition
which might just cope with Fourier transforms applied to
some very simple problem such as waves in linear electric
circuits or physical optics. Fluid turbulence is not only a
highly nonlinear phenomenon but also involves random
amplitudes and phases. In some many-body problems,
the approximate cancellation of phases justifies a random
phase approximation; and in other cases the phases are
known to cancel exactly. Indeed, when we form the en-
ergy spectrum in turbulence, the phases cancel exactly
by construction. But this does not alter the fact that
making intuitive connections between phenomena in x-
space and those in k-space is likely to prove a rather
fraught procedure. Having said that, let us now take the
two points in order.
The idea of localness is crucial to the cascade. When
we consider the Fourier-transformed NSE, the first thing
we learn is that nonlinear mixing couples each Fourier
mode to every other mode. So it would be helpful if we
had something like a ‘nearest neighbour’ assumption for
interactions, (e.g. as in the Ising model for ferromag-
netism). This situation is made worse by the fact that
the interactions between modes of the NSE are triadic.
So the concept of ‘nearest neighbour’ is not available to
us and has to be replaced by some idea of ‘strongly in-
teracting triads’ and ‘weakly interacting triads’. This
topic has been the subject of numerical investigations.
For example, see [20], and [21]. The latter investigation
is particularly interesting in our present context as it
considers concurrent real-space and wavenumber-space
views. However, interesting although these matters are,
we do not need to rely on them in order to justify Kol-
mogorov’s picture. It was recognised by Batchelor [22],
at least as early as the 1950s, that the key was not the
transfer spectrum but the flux through mode k. It fol-
lows rigorously from the symmetry of the NSE, that the
local flux through mode k is determined by a sum over
all contributions j such that j ≤ k. This is the only con-
cept of localness that K41 needs. And as the Reynolds
number increases, and the energy-containing and dissipa-
tion ranges move apart, the inertial range becomes that
range of wavenumbers where the flux is approximately
constant and equal to the dissipation.
As regards the second point, one must be aware of iden-
tifying a vortical structure, such as a vortex tube, with
a particular Fourier mode. If a given vortex tube con-
tributes to u21(k) and u22(k), where k is large; but not
to the corresponding u23(k), then some other vortex tube
must make up the deficit. At the end of the day, the
combined effects of ensemble-averaging and isotropy will
ensure that this is so. We would reiterate that the Kol-
mogorov spectral picture involves only average quantities
and reasoning from some speculation about a single re-
alization is likely to prove tenuous at best.

2.3 Problems with averages

The idea that K41 had some problem the way that aver-
ages were taken has its origins in the famous footnote on
page 126 of the book by Landau and Lifshitz [10]. This

footnote is notoriously difficult to understand; not least
because it is meaningless unless its discussion of the ‘dis-
sipation rate ε’ refers to the instantaneous dissipation
rate. Yet ε is clearly defined in the text above (see the
equation immediately before their (33.8)) as being the
mean dissipation rate. Nevertheless, the footnote ends
with the sentence ‘The result of the averaging therefore
cannot be universal’. As their preceding discussion in
the footnote makes clear, this lack of universality refers
to ’different flows’: presumably wakes, jets, duct flows,
and so on.
As we have already observed, Kolmogorov interpreted
this criticism as referring to the small-scale intermittency
of the instantaneous dissipation rate. His response was
to adopt Obukhov’s proposal to introduce a dissipation
rate which had been averaged over a sphere of radius r.
This procedure runs into an immediate fundamental ob-
jection. In K41A, (or its wavenumber- space equivalent)
the relevant inertial-range quantity for the dimensional
analysis is the local (in wavenumber) energy transfer.
This is of course equal to the mean dissipation rate by
the global conservation of energy3. However, there is no
such simple relationship between locally-averaged energy
transfer and locally-averaged dissipation [16].
Another point worth reiterating at this stage is that the
derivation of the ‘4/5’ law is completely unaffected by
the ‘refinements’ of K62. This is really rather obvious.
The Karman-Howarth equation involves only ensemble-
averaged quantities and the derivation of the ‘4/5’ law
requires only the vanishing of the viscous term. This fact
was noted by Kolmogorov [11].
The averaging process in K62 has been discussed in some
detail by Monin and Yaglom [23]. A more extensive dis-
cussion (complete with helpful diagrams) can be found
in the book by Davidson [19]. We will only make one
particular point here, which arises from an observation
by Kraichnan [16], and which does not actually depend
on the nature of the averaging process. In fact Kraich-
nan worked with the energy spectrum, rather than the
structure function, and interpreted Landau’s criticism of
K41 as applying to

E(k) = αε2/3k−5/3. (3)

His interpretation of Landau was that the prefactor α
may not be a universal constant because the left-hand
side of Eq. (3) is, an average, while the right-hand side is
the 2/3 power of an average. He then went on to discuss
this in terms of the partial averaging procedure of K62.
However, as we have mentioned above, this relationship
could be a problem for any averaging procedure. Any av-
erage involves the taking of a limit. Suppose we consider
a time average, then we have

E(k) = lim
T→∞

1
T

∫ T

0
Ê(k, t)dt, (4)

where as usual the ‘hat’ denotes an instantaneous value.
Clearly the statement

E(k) = a constant; (5)

or equally the statement,

E(k) = f ≡ 〈f̂〉, (6)

3. It is a potent source of confusion that these theories are almost
always discussed in terms of dissipation when the proper inertial-
range quantity is the nonlinear transfer of energy.
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for some suitable f , presents no problem. It is the ‘2/3’
power on the right-hand side of Eq. (3) which means
that we are apparently equating the operation of taking
a limit to the 2/3 power of taking a limit. However, it
has recently been shown [7] that this issue is resolved
by noting that the pre-factor α itself involves an average
over the phases of the system.

2.4 Anomalous exponents

The term anomalous exponents is used to refer to the
case where the power-law exponents ζn of structure func-
tions Sn(r) differ from the Kolmogorov values n/3. The
rise in interest in this topic has (unsurprisingly) gone
hand in hand with the trend in recent years away from
measurements of spectra to measurements of moments
and structure functions in real space. Typically an ex-
perimental plot of exponents ζn against n yields a curve
in which the difference between ζn and n/3 increases with
increasing n.
The idea of anomalous exponents seems to have arisen
by analogy with the concept of anomalous dimension in
the statistical field theory of equilibrium critical phenom-
ena. However, such analogies should be interpreted with
caution. In equilibrium, critical exponents determined
by renormalization group methods differ from those ob-
tained by dimensional analysis. The central role of the
dimension of space in these theories leads to a natural
interpretation in terms of anomalous dimension. But
this situation arises because dimensional analysis is a
very weak method in equilibrium problems and requires
the introduction of densities in order to introduce di-
mensional considerations. In contrast, non-equilibrium
systems are characterised by a symmetry-breaking cur-
rent or flux. In the case of turbulence, this is the inertial
transfer flux; and, combined with conservation of energy,
this provides a strong constraint on dimensional analy-
sis. A simple introduction to these ideas can be found in
the book [24].
Our use of inverted commas with the term ‘Kolmogorov
values’ is an implicit recognition of the fact that the
Sn(r), for n > 3, are not actually part of the Kolmogorov
(1941) theory, which is (in both K41A and K41B forms)
a theory of S2 and S3. There are three points which we
would like to emphasise here. These are as follows:

1. The structure functions S2(r) and S3(r) are con-
nected together by the principle of conservation of
energy. This takes the form of the Karman-Howarth
equation; or, if we are using spectral forms, the Lin
equation. It is with reference to these equations that
we can define the energy-containing (or input); in-
ertial; and dissipation ranges of wavenumbers.

2. For structure functions Sn(r), with n ≥ 4; these
wavenumber ranges are undefined.

3. Any systematic trend in the dependence of ζn on n,
with increasing n, may be a systematic error due to
the increasing importance of rare events with order
n.

These points are often glossed over or ignored; particu-
larly in the search for the so-called intermittency correc-
tions.
The association of internal intermittency with anoma-
lous exponents has developed strongly over the last few
decades. Originally fractal models were popular (for an

introductory discussion, see [13]) but later on multifrac-
tal models replaced them in popularity: for a recent re-
view, see [25]. Over the same time, there has been a
growing body of work supporting the obvious explana-
tion for the deviation of exponents from the Kolmogorov
(1941) values: namely that the conditions imposed by
the theory are not fully satisfied at finite Reynolds num-
bers.
This disagreement is capable of being resolved, as fol-
lows.

1. If intermittency effects are dominant, then these are
expected to increase with increasing Reynolds num-
ber and

E(k)→ k−5/3+μ as R→∞.

2. Conversely, if finite-Reynolds-number effects are
dominant, then

E(k)→ k−5/3 as R→∞.

As direct numerical simulations increase in size and
resolution, an examination of the dependence of μ on
Reynolds number should settle this question.
However we may conclude this part of our discussion
with a salutary quotation, taken from Kraichnan’s 1974
discussion of Kolmogorov’s theories [16]. If (1) above
is correct, and E(k) ∼ k−5/3+μ is aysmptotically valid,
then it follow that

’... the value of μ depends on the details of the
nonlinear interaction embodied in the Navier-
Stokes equation and cannot be deduced from
overall symmetrels, invariance and dimension-
ality.’

In other words, perceived intermittency is an aspect of
the solution of the Navier-Stokes equation.

3 Kolmogorov (1941) revisited

In this section we give a brief discussion of six different
investigations which, individually and collectively, offer
considerable support to K41 rather than K62. Among
the earliest in this category is the work by Effinger and
Grossmann on the second-order structure function for
the velocity field [26], which was later extended to struc-
ture functions of the temperature field in passive convec-
tion [27].
These authors studied the second-order structure func-
tion, by introducing a spatial smoothing operation in
which they averaged the fluid velocity field uα(x, t) over
a sphere of radius r, thus:

u(r)α (x, t) = 〈uα(x, t)〉(r) , (7)

where u
(r)
α is referred to as the super-scale velocity field

and the superscript on the angle-brackets indicates that
the spatial average is taken over a sphere of radius r.
The corresponding sub-scale velocity field ũ

(r)
α was then

obtained by subtraction, thus:

ũ(r)α (x, t) = uα(x, t)− u(r)α (x, t). (8)

The authors drew an analogy between their approach,
and that of Reynolds, in which they operate on the NSE
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with Eq. (7) in order to derive separate equations of mo-
tion for the super-scale and sub-scale velocity fields. In
principle, then, their strategy is to solve the equation
for the sub-scale field and substitute the result into the
equation for the super-scale field. In order to do this,
they make a number of approximations, predominantly
of the type used in renormalization group theory, which
their method to some extent resembles. But, although
approximate, their result for S2 agrees well with exper-
imental results and its asymptotic behaviour supports
K41 with viscous corrections.
For completeness we should mention that Effinger and
Grossmann [27] extended this method to the problem of
passive scalar convection. Later this group presented an
analysis of data from DNS which supported the idea that
there are no intermittency corrections to energy spectra,
when their results are extended to very high Reynolds
numbers [28]; and more recently they have argued that
the use of nonperturbative renormalization group meth-
ods enforces the K41 spectrum for HIT [3].
Chronologically, our next approach is due to Qian, who
has published a series of papers dealing with aspects of
the scaling properties of HIT; and, in particular, on de-
ciding whether the second-order exponent ζ2 corresponds
to normal Kolmogorov scaling (ζ2 = 2/3) or anomalous
scaling (ζ2 > 2/3). Here we shall concentrate on just
three of these, that is [4], and the two papers leading up
to it, [29, 30]. We may begin by noting that his method
is different from all the other theoretical approaches, in
that it is really a sophisticated form of data analysis, and
is based on the use of exact relationships, combined with
well-established data correlations, in order to extract as
much information as possible from experimental results.
Where assumptions are made, careful testing of the ef-
fect of varying these assumptions shows that they are
innocuous.
We will give only a brief impression of this work and con-
centrate on his analysis of extended spectral similarity or
ESS. Qian shows that a log-log plot of S2 versus S3 pro-
duces the expected straight line. But when he plots the
local gradient of that line against r/η, instead of being
constant as one would expect, it shows a prominent peak,
only becoming constant at large values of the scale. This
in itself appears to question the validity of ESS. However,
extending this work to higher-order structure functions,
Qian demonstrates that the results from ESS actually
support K41 rather than K62.
We cannot do justice to Qian’s analysis here. The in-
terested reader should consult the original papers which,
although hard work, are rewarding. We now turn to the
work of Barenblatt and Chorin, who also have published
extensively on the theory of turbulence, particularly with
reference to scaling and similarity, over a period of years.
A good starting point is their two papers in 1988 [2,31],
which summarise their approach and which cite many
earlier references. Their main emphasis is on the so-
called ‘law of the wall’ in wall-bounded shear flows. How-
ever, they also deal with the inertial-range spectrum and
conclude that the classical, unmodified K41 theory gives
’.. an adequate description of the local features of devel-
oped turbulent flows’. It is, of course, this latter aspect
which concerns us here.
Essentially, Barenblatt and Chorin discuss the nature of
scaling theory in turbulence. At the point where most
people follow K62, and introduce the external length-
scale to fill the gap in the dimensional analysis, these au-
thors give arguments to support the use of the dissipation
length-scale for this purpose. As a result they conclude

that both the prefactor and the exponent in K41 are sub-
ject to corrections which are dependent on the Reynolds
number. Overall, they conclude that ‘ . . . there are no in-
termittency corrections to the Kolmogorov ‘5/3’ spectral
exponent’.
Next, we consider the first of two asymptotic matching
theories: in this case for the energy spectrum. The work
of Gamard and George [5] was motivated by the exper-
imental study of Mydlarski and Warhaft [32], which re-
ported finite Reynolds number effects in inertial-range
spectra. As with other investigations discussed here, the
paper cited is the outcome of a programme of work over
some years and gives a number of references to previous
work by George and co-workers.
Their starting point is the recognition that the en-
ergy spectrum can be scaled both on Karman-Howarth
variables (which gives a better collapse of data at low
wavenumbers) and also on Kolmogorov variables (which
gives a better collapse of data at high wavenumbers).
Accordingly they introduced the dimensionless functions
fL for low wavenumbers, and fH for high wavenumbers.
Recognising that fL must asymptote to an inertial-range
form for high wavenumbers and fH must asymptote to
an inertial-range form for low wavenumbers, Gamard and
George set out to establish their functional form in a
common region such that this form exists in the limit of
infinite Reynolds numbers. This required an extensive
analysis. Extension of this to finite Reynolds numbers
involved some approximations, but these were checked
by experimental comparisons at crucial stages. In a con-
vincing analysis, they showed that the intermittency ex-
ponent μ vanishes as the Reynolds number increases, in
agreement with experiment.
Our second asymptotic analysis is the theory of Lund-
gren [6], who adopted a similar strategy to that of
Gamard and George, but who worked in real space with
the structure functions. Like them, he employed both
Karman-Howarth and Kolmogorov variables to scale the
structure functions, and then matched asymptotic high-
Reynolds expansions to obtain the Kolmogorov ’2/3’ law.
However, where Gamard and George demonstrate the
point, Lundgren proves analytically that the KH scaling
(at large scales) and the Kolmogorov scaling (at small
scales) are both asymptotically valid, as the Reynolds
number tends to infinity. Matching asymptotic expan-
sions, Lundgren concluded that, in the limit of infinite
Reynolds numbers, S2 ∼ r2/3 and S3 ∼ r, in accordance
with K41. In later work, Lundgren examined the depen-
dence on Reynolds number in a more general way [33].
Gamard and George on the one hand, and Lundgren on
the other, leave very little room for doubt. Their iden-
tical conclusions are to the effect that the predictions of
K41 for S2(r) or E(k) are subject to corrections due to
finite viscosity and are asymptotically valid in the limit
of infinite Reynolds number. Both can point to experi-
mental support for their theoretical conclusions.
We close this discussion with the observation that K41b
relies on a de facto closure of the Karman-Howarth equa-
tion as the viscosity tends to zero. The same idea can be
employed in wavenumber space with the Lin equation [7],
but here the effect of the phases can be taken into ac-
count explicitly. It transpires that the spectral prefactor
arises from an integral over the phases and that the pres-
ence of this average resolves the problem of dependence
on an average to the ‘2/3’ power, as noted earlier.
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4 Conclusion

It has to be conceded that K41A is not a completely sat-
isfactory theory. There is no cascade in real space and
the dimensional analysis seems to rely on some sort of
intuitive appeal to what is going on behind the scenes,
as it were, in wavenumber space. There we have the
concept of flux of energy from all lower wavenumbers
to the wavenumber of interest. This is a property of
the equations of motion. The necessary additional con-
cept of scale invariance (which defines the inertial range)
arises inevitably as the Reynolds number increases and
the dissipation is pushed to ever-higher wavenumbers.
This also is a property of the NSE. Perhaps it is better,
therefore, to carry out the analysis in wavenumber space
and recover the inertial-range form of S2(r) by Fourier
transformation.
In contrast, K41B, as a prediction of the inertial-range
form of the third-order structure function, is incontro-
vertible. The analyis is asymptotically exact and the
Kolmogorov form must apply at infinite Reynolds num-
bers. From this, two points arise as a corollary. They
are, as follows:

1. Any theory or procedure which relies on the assump-
tion that the scaling exponent of S3 is exactly n = 1
at finite Reynolds numbers is already subject to er-
ror, however small.

2. The fact that S3 is subject to finite-viscosity cor-
rections sets a precedent for S2 which is rigorously
connected to it by conservation of energy. However,
higher structure functions are not part of K41.

Overall, our conclusion is that K41 is basically correct
and that, in particular, the work of Gamard and George
[5] and of Lundgren [6], when taken together, leave lit-
tle room for doubt on this matter. In both wavenum-
ber and physical space, K41 is asymptotically exact at
large Reynolds numbers and otherwise subject to finite-
viscosity corrections. As pointed out by Kraichnan [16]
and by Qian [4], K62 is not a ‘refinement’ of K41, but
rather represents quite a different physical picture of tur-
bulence. It is important to settle this matter and in time
the development of DNS should lead to a resolution (for
example, see the review [34]). However, it should be
borne in mind that our present discussion is limited to
homogeneous, isotropic turbulence and the conclusions
may have to be modified for any more general situa-
tion. The necessity for this type of examination for other
classes of flow must be borne in mind. Further, and more
detailed, examination of the issues discussed in this ar-
ticle will appear later in the book [35], which is now in
preparation.
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Abstract

The interfaces that define significant changes in tur-
bulence statistics, vorticity and the concentration of a
scalar, at the edges of jets, plumes, vortices and between
bodies of fluids with different properties (in the presence
of body forces) largely control the gross features of these
flows, such as entrainment. New diagnostics tools have
been developed within the fluids community to analyse,
classify and understand the influence of these interfaces.
In turn, this is leading to new modeling strategies that
can be applied to describe these processes. This sur-
vey brings together broad elements across fluids mechan-
ics to highlight the importance of reduced modeling ap-
proaches for interfaces in turbulence.

1 Introduction

Thin, approximately continuous layers, and even thinner
interfaces that bound these layers, are a characteristic
feature of turbulent flows separating regions of high and
low fluctuations of kinetic energy. They also delineate at
the same time and place, regions of high and low con-
centration of other scalar and vector fields. These layers
are observed at the edges of boundary layers (see Fig-
ure (1)(a,b)), clouds, exhaust jets from vehicles, flames
or, at very high Reynolds number, within turbulent flows
(see Figure (1)(c)). Interfaces between regions of high
and low concentration of a scalar are also often associ-
ated with jumps in the mean velocity (measured rela-
tive to the interface) as occurs at the edges of chimney
plumes. Recent research has shown that these layers are
significant dynamically because their internal small scale
motions control the mean motion outwards of regions of
turbulence-the ‘nibbling effect’. They also directly block
and distort large scale eddies, a process which can keep
the interfaces sharp. But very energetic larger scale mo-
tions can break up the interface [1]. In other words these
interfaces are not merely passive markers as previously
considered.
New methods to measure conditionally sampled veloc-
ity fields within and around these interfaces have been
achieved in experiments [2, 5, 6] and very high resolu-
tion computations at high Reynolds numbers [4]. New
theoretical models of the turbulent velocity fields across
interfaces [1] and simulations [3, 7], show similar types
of layered flows, with similar dynamics and statistics in
different types of homogeneous and inhomogeneous tur-
bulent flows.

Figure 1: (a) Experimental concentration field in a thin
slice through a turbulent jet at Re ∼ 2000 (from [2]). (b)
The vortices near (under) a T/NT interface (from [3]).
(c) Thin layers containing high intensity micro-scale vor-
tices in homogeneous turbulence at Re ∼ 1000 (simula-
tions of Ishihara et al [4]).

Interfaces with similar properties of sharp gradients in
velocity occur in many other kinds of flows, such as geo-
physical flows, free surface flows and magnetohydrody-
namics [8]. We review the diagnostic tools being applied
to analyse these turbulent flow features, understand the
physics and the modelling techniques that are able to
capture their salient features. This survey is topical and
current, following on from a recent Euromech 517 meet-
ing at UCL (June 2010) and a themed volume with the
Royal Society on Dynamical Barriers and Interfaces in
Turbulent Flows [9].

2 Diagnostic tools

A variety of diagnostic tools have been developed to in-
terrogate data fields derived from experimental and com-
putational studies of turbulence and to analyse the in-
terfaces within such flows. When the fluctuation of the
interfaces are small compared to the integral scale, L, the
characteristic features can be studied using an Eulerian-
Galilean frame of reference. For instance, in the presence
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of strong stratification (low Fr), the interfaces exist as
step-stratified horizontal layers. When the fluctuations
of the interface are not small compared to the integral
scale, the flow properties must then be studied using a
Lagrangian or conditionally averaged framework. In this
new frame of reference the physics is common between
different types of turbulent flows and can be used to ex-
plain measurements made in the Eulerian frame. Here
we introduce some of the diagnostic tools used to analyse
interfaces.

2.1 Interface identification and position

Interfaces at Y (x, t) in a two-dimensional flow – occur
where there is intense turbulence in the region where
y < Y . They are usually identified by rapid changes in a
scalar quantity or its gradient. For instance, where the
magnitude of the mean (or one component) of vorticity
is above a threshold value Ω, e.g.

Y (x, t) = {y; |ω̄(x, Y, t)| > Ω} (1)

where the average value is defined along the interface and
within the thin interface layer. The interface position
can be identified as the mean of the points within the
interface i.e. YI(x, t) = Ȳ (x, t), where the average is
over the points at fixed x. A measure of the interface
lengthscale lmx is defined by |ω̄(YI < y < YI+lmx)| < Ω.
In some cases max(|ω̄|) occurs near the centre of the
layer in which case the interface thickness is l ∼ 2lmx.
At the edges of jets and wakes and in high Re turbulence
has a thickness comparable to LRe−1/2 [7, 10]. Within
the layer there may be intense fluctuations for a scalar
concentration field, C, a similar criterion can be applied
The RMS fluctuation of the interface position can be
defined as

σY =
√
(Y − Ȳ )2. (2)

Since the interfaces are thin and difficult to capture ex-
perimentally, some authors have used the temperature
fluctuation (for heated jets, wakes) or a dye contour as
a marker for the edge of the interface [2]. In this case,
Y (x, t) = {y;C(x, Y, t) < Cm}. This definition of the
interface position is relatively insensitive to the choice
of the threshold values for scalars because generally the
jump in concentration tends to be about 10 times the
threshold value, as seen in Figure (1)(a).

2.2 Conditional averages based on rela-
tive distance

Once the position, in time, of the interface has been iden-
tified, the average properties relative to the flow can then
be determined. For instance, the conditionally average
horizontal velocity in the vicinity of the interface, ex-
pressed in terms of a coordinate n outwards from the
interface, is

Ũ(n) =
1
T

∫ T

0
u(x, YI(x, t) + n)dt, (3)

where the average is over time. Similar definitions can
be applied, for instance, for the Reynolds stress etc.

2.3 Bulk parameters in relation to the
interface

The outward speed of the interface position, EI ,

EI =
〈
dYI
dt

〉
(4)

is determined by the turbulence and mean flow in the
shear layer. For some shear flows the interface speed
is related to the mean entrainment coefficient through
α = EI〈U〉 [11]. For jets or plumes where the volume
flux increases, the entrainment velocity Ev is negative
(towards the interface). The value of αI is related to
the bulk entrainment coefficient αE = Ev|〈U〉| which de-
pends on the geometry and nature of the forcing. For in-
stance, normalizing |EI |, |Ev| on 〈U〉, gives |αI | = 2|αE |
(axisymmetric jet), |αI | = |αE | (two-dimensional jet),
for an axisymmetric plume. The reduction in αI from a
jet to a plume caused the momentum flux increasing with
distance. For turbulent wakes, the mean velocity is a per-
turbation on the background velocity U∞(U = U∞−ΔU)
and the bulk momentum and volume flux are both pro-
portional to Q =

∫∞
−∞ΔUdy ∼ ΔUYW , and therefore to

EI . In wakes, EV is small and not dynamically signif-
icant. When these shear flows are perturbed by exter-
nal forces (eg combustion or by external turbulence) (ie
uE > ΔU) then EI can be increased and EV decreased,
as the interface breaks up [1].

3 Deriving mean flow profiles

The interface statistics are linked to the gross-
characteristics of the ambient flow. For instance, for jets,
plumes and wakes, adjacent to the interface, the mean
momentum flux across the interface is linked to the con-
ditional mean jump in velocity [2, 5],

EIΔUC ∼= Δτ, (5)

where Δτ is difference between the Reynolds stress
within the vortical region and the negligible stress out-
side the interface. Δτ can be estimated in terms of the
conditional mean flow

Δτc(n) ∼= −νe
∂〈Uc〉
∂n

(n > 0), (6)

where νe is the approximately constant eddy viscosity
inside the interface. The conditionally averaged vortic-
ity field ∂Ũ/∂n varies sharply and is similar to a vortex
sheet where the vorticity is a delta function, plus a step
function. The conditionally averaged velocity is there-
fore characterized by a jump and a gradient:

Ũ(n) ∼= H(n)ΔU + nH(n)
∂〈U〉
∂n

. (7)

Considering the convolution of conditionally averaged ve-
locity field with the p.d.f. of the interface (YI) position
provides a direct link with the mean velocity field near
an interface, U(y). For a single interface, the mean Eule-
rian profile gives a Gaussian fluctuation of the interface
(with variance σI), is

U(y) ∼= 1
2
ΔU

{
1 + erf

(
y − YI

σI
√
2

)}
. (8)
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This accords with jet experiments by Westerweel et al.
[2], who note that constant eddy viscosity (in a fixed
frame) - as hypothesized by Prandtl [12] - accounts for
this kind of profile without any numerical problems near
the outer edge .This is the model used in some industries.
Thus in general models for σI , and the implications for
other flow variables, are needed for Eulerian CFD models
to account for the effects of the unsteady interface on
the mean flow and turbulence [2]. A related problem
concerns the role of the turbulent eddies in the dynamics
and characteristics of the interface and the nature of the
‘nibbling’ eddy motions near its surface [3, 5, 7, 13].

4 Implications for advanced mod-
eling techniques

The interface at the edge of a turbulent boundary layer
is too thin to be resolved at Reynolds numbers typical of
practical engineering problems. One modeling approach
is to calculate explicitly the unsteady interface in (con-
tinuum) turbulence models and then calculate the tur-
bulence characteristics on either side of it. The second is
based on a fresh re-evaluation of the traditional models
of flows where interfaces occur.

4.1 Continuum models

Large eddy simulation (LES) models are available to rep-
resent flows and eddy motions down to the filter scale
Δ (which should be significantly smaller than 1/10 of
the integral scale L). Accurate prediction of the detailed
turbulent flow characteristics near thin T/NT interfaces
raises new challenges for LES. Arguably LES is not a
practical method for calculating the flow over an aircraft
wing or in geophysical flows where the integral scale of
the turbulence is much less than the overall scale of the
flow. Consequently, hybrid simulation methods (e.g. de-
tached or organised eddy simulations - OES) are used
where the large scale eddy motions are computed explic-
itly and the small scales are modelled statistically as a
Reynolds stress acting on the large scales [14]. A new
approach is being developed to represent the high gra-
dients and anisotropic characteristics of turbulence near
boundary interfaces and to capture the thin shear lay-
ers in high-Reynolds separated turbulent flows. This is
necessary for the correct prediction of the unsteady aero-
dynamic coefficients and especially of the pressure fluc-
tuations in the near, intermediate and far wake regions,
in respect of aeroacoustics.
The aim of the present study, still in progress, is to en-
hance the accuracy of OES, using grid sizes larger than
the interface layer thickness l. Stochastic forcing of a se-
ries of inhomogeneous large scale random Fourier modes
[15], in the region adjacent to the interfaces. This forc-
ing, which is modified by the blocking effect towards the
interface, is introduced into the dynamical equations at
each iterative step. This keeps the interface thin [10], and
modifies the shear stress model. This mechanism over-
comes the limitation of standard statistical approaches
that are not able to capture inhomogeneous upscale pro-
cess in turbulence modelling; they simulate downscale
energy transfer and eddy diffusion that causes thicken-
ing of the interfaces. The process is iterative as the in-
terface position, large scale modes, and Reynolds stress
calculations interact with each other.
To illustrate this method, the flow past a flat strut with

an incident angle of 10 degrees was considered and the
results are shown in Figure (2)(a,b). Two-dimensional
OES simulations were performed using a NSMB (Navier-
Stokes Multi-Block) code, which consisted of solving a
‘phase-averaged’ Navier-Stokes equation with a finite-
volume implicit formulation. The 2D structured mesh
consists in 3×105 nodes. The chord Reynolds number is
equal to 4×106. This unsteady flow separates at lead-
ing edge and develops a von Karman street interacting
with Kelvin-Helmholtz instability at trailing edge. The
capture of these irrotational/rotational interfaces is es-
sential to define correctly the domain where stochastic
perturbation must be added and where the shear stress
model is changed. The iso-contours of turbulent kinetic
energy (Figure (2)(a)) and vorticity (Figure (2)(b)) are
shown, where the black line corresponds to the computed
interface.

Figure 2: Simulations of OES showing contours of (a)
turbulent kinetic energy and (b) vorticity.

4.2 Discrete top hat models

Two types of approximate analytical models, in Eu-
lerian frames, for describing laminar and turbulent
jets/plumes/wakes, with some initial scale D, are based
on different assumptions about the form of the mean ve-
locity distribution U(x, y) (i) a characteristic profile, e.g.
U(y)/U(yREF ), or (ii) a selfpreserving form as the scale
l(x) changes, i.e U(x/l(x)). This may also be self-similar
as the length scale change, e.g. if l(x) varies as a power
law l(x) ∼ ((x− x0)/D)p where x0 is the origin position
and p is a constant in the flow direction [16].
For turbulent jets / plumes, Morton et al [17] and others
assumed ‘top-hat’ profiles defined by the average across
the section 〈U〉(x) and the radius l(x); the resulting an-
alytical models compared well with experiments. But
this model does not account for the significant observed
difference between the instantaneous (Figure (3)(a)) and
time (or ensemble) averaged profiles (Figure (3)(b)). The
time-averaged concentration field of a jet has a nearly
Gaussian profile, although the instantaneous view shows
a significant variation in the cross-stream concentration
field, the conditional average relative to the fluctuating
outer interface is rather flat [2]. This is why the inter-
face move outwards largely by ‘nibbling’ at the interface,
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until external turbulence dominates (which is excluded
from the MTT model). Self-preserving and self-similar

Figure 3: Comparison between experimental measure-
ments of the instantaneous and time average concentra-
tion field in a jet (from [18]).

wake/jet solutions become valid at a distance when the
form of the initial profile become small-though the in-
fluence of the initial large eddy structure is significant
along the entire flow [19]. But, for three-dimensional
flows, the Reynolds number of a turbulent wake lΔU/v
decreases with distance, so that the flow eventually be-
comes laminar (over many hundreds of diameters). Then
the wake deficit similarity solution changes and becomes
an exact solution of the Navier-Stokes equation. For two
and three-dimensional wakes where they are turbulent
the self- preserving forms of the deficit profiles ΔU(x, y)
agree with turbulence closure models. In complex bodies
(e.g. with porosity) the flow near the body needs to be
specified.
It is useful to combine the concept of randomly moving
sharp interfaces, developed in Section 3, with the approx-
imation of a top-hat form for the ensemble mean velocity
profile within the interface. Take for example the turbu-
lent wake downstream of a cylinder (diameter, D). The
conditionally averaged velocity u, in a uniform flow U∞,
is approximately

u = U∞ −ΔU [H(y − YI)−H(y − Y2)], (9)

where y-coordinates of the fluctuating wake interfaces are
at Y1 and Y2, and the velocity deficit is ΔU , which also
fluctuates. Coupled with the conservation of momentum
flux requires the mean drag on the cylinder to be

F =
∫ ∞
−∞

ρu(u−U∞)dy = ρ〈ΔU〉(U∞−〈ΔU〉)(Y2−Y1).

(10)
The self-preserving form of cylinder wakes only begins
to occur several diameters downwind when the vorticity
from one side of the wake diffuse into the other side [20].
In the near wake the vertical interfaces Y1, Y2 meander
as a results of the alternate shedding of vortices into the
ambient flow. The dominant frequency of the wake in-
terface fluctuations is SU∞/D (where S ∼ 0.2). Down-
wind of the near wake the mean width of the wake is
〈YW 〉 = 〈|Y1 − Y2|〉, where

〈YW 〉 = CDU2
∞D

2〈ΔU〉(U∞ − 〈ΔU〉) . (11)

The jump in the Reynolds stress at the edge of the in-
terface is given by Eq. (5). For a two-dimensional flow,

u′ν′ = −|EI |ΔUc

〈
y − 1

2 (Y1 + Y2)
〉

〈YW 〉 (12)

The solution for 〈ΔU〉, 〈YW 〉 derived from Eq. (9) and
Eq. (11) is self-similar far downstream when 〈ΔU〉 <<

U∞ (eg 〈YW 〉 ∼ (x/D) 12 ). But in the near field, where
〈YW 〉(x) and the mean flow profile 〈U〉(y) are determined
by the p.d.f. of the wake position, their variations with
x are also self-similar (∼ ((x−x0)/D) 12 ). But note there
is a transition in the ‘false’ origin of the self-similar solu-
tions between the near and far wake. There is a further
transition far downwind if the flow becomes laminar.
Thus Gaussian-like wake profiles which are measured be-
hind rigid bodies in turbulent flows are all self-preserving
and have self-similar rates of decay over certain ranges.
The profiles result from the combined effects of the fluc-
tuations of the interfaces and the dynamics across the
interface, which is mostly small scale, and within the
wake. The former is greatest near the body and the
latter further downwind. In some flows with high ex-
ternal turbulence the vorticity in the wake is advected
randomly like a scalar, and the local wake dynamics are
not significant. But if the external turbulence is weak,
there may be three ranges of self-similarity: near (self-
induced vortex shedding), far (wake dynamics), far-field
(dominated by external turbulence). If there is no exter-
nal turbulence and the wake is three-dimensional, there
may be a very farÂŰfield wake flow that is laminar and
again self-similar. These differences in the dynamics lead
to transitions between self-similar rates of decay, which
may have different exponents or false origin positions
x0/D. More complex unsteady Reynolds stress models
or simulations are necessary to describe these processes.

5 Conclusions

Where fluid particle displacements are larger than the
characteristic distance over which there are large changes
in velocity, such as turbulence near external and inter-
nal interfaces, or atmospheric eddies disturbing wakes
and plumes, the statistical analysis of turbulent flows
based wholely on Eulerian-Galilean frames of reference
give wrong results. This is why, for example, engineering-
based CFD models are not used for many external en-
vironmental applications. Conditional analysis based
on Lagrangian, randomly moving frames of reference
become necessary. But the analysis of the intermedi-
ate/smaller scales of motion in this frame can benefit
from the standard approximations of Reynolds averaged
modeling [2].
Local analysis of the flow near moving interfaces shows
that turbulent kinetic energy and mean shear keep the
interface sharp. But in a fixed frame, the mean effect of
a fluctuating interface produces a smooth profile of the
mean flow variables. This explains why a finite value
of eddy viscosity exists at the other outer region of the
jet, despite the fact that the turbulence varies here. The
outward movement of the boundary is determined by
small-scale turbulent eddies ‘nibbling’ at the interface,
rather than by engulfing motions of large eddies because
these only extend a limited distance, there is very little
unmixed external fluid in the interior of the turbulence.
The conclusion from this work is that the time averaged
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results can be synthesized from the conditionally aver-
aged metrics, providing additional measures are taken
regarding the statistics of the interface position and the
physics of the flow near the interface. In this paper we
have highlighted some of the new advanced modelling
techniques which are coming into the place to under-
stand, analyse and predict their movement.
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Abstract

Introduced in the mid-1990’s, Structure-Based turbu-
lence Models (SBMs) provide today one of the few
promising routes for improved turbulence closures. In
this paper, we provide a brief historical account of the
approach, the main types of SBMs, and focus in greater
technical detail on the Algebraic Structure-based Model
(ASBM). We then study an example application of the
ASBM, and finally conclude with a discussion of the fu-
ture directions for structure-based modeling.

1 Introduction

In a paper dealing with rapidly rotated flows,
Reynolds [1] was the first to recognize that traditional
RANS approaches suffer from a fundamental limitation.
The limitation stems from the fact that traditional tur-
bulence models, not just eddy-viscosity type models but
also algebraic and differential models, contain informa-
tion about the componentality of the turbulence, but not
about its structure dimensionality [1, 2]. This limits the
performance of these models in complex non-equilibrium
flows, where the fluid can locally be exposed to strong
mean deformation or rotation. Here, “structure dimen-
sionality” refers to the morphology of the dynamically
important energy-containing structures in the turbulence
field. Large-scale energy-containing eddies tend to orga-
nize spatially the fluctuating motion in their vicinity. In
doing so, they eliminate gradients of fluctuation fields in
some directions (those in which the spatial extent of the
structure is significant) and enhance gradients in other
directions (those in which the extent of the structure is
small). Thus, associated with each eddy are local axes
of dependence and independence that determine the di-
mensionality of the local turbulence. In the case of vec-
tor fluctuation fields, e.g. the turbulent velocity, dimen-
sionality determines the spatial variation of the fluctu-
ations, but not the orientation of the fluctuating vector
in space, which is the componentality information con-
tained in the turbulent stresses. In equilibrium flows,
the principal axes of the turbulent stresses can be as-
sumed to roughly track those of the local mean stain
rate tensor. Therefore, the turbulent stress anisotropy
can be approximated without reference to the dimen-
sionality of the underlying turbulence structure. How-
ever, in non-equilibrium flows (strong rotation, separa-
tion and reattachment, etc.), the dimensionality of the
turbulence structure dictates how the turbulence will re-
spond to external deformation, and the turbulence ex-
hibits a viscoelastic-like response. The alignment of the
principal axes of the turbulent stresses, i.e. the com-
ponentality of the turbulence, is to a large extent de-
termined by the dimensionality of the local turbulent

structure, i.e. by the morphology of the local turbu-
lence eddies. This realization led to the development of
the structure-based approach to turbulence modeling. In
Kassinos and Reynolds [2–4] this approach was placed on
a rigorous mathematical foundation.
The initial development of the Structure-Based approach
was carried out at Stanford University. In the late
1990’s, a Structure-Based Model [3, 5, 6] was developed
and shown to perform better than standard Reynolds
Stress Transport (RST) models in many complex flows,
such as flows with strong mean or frame rotation. In
Structure-Based Models (SBM), the Reynolds stress ten-
sor is expressed as a function of the one-point turbulence
structure tensors that sensitize the model not only to the
anisotropy of the turbulence componentality, but also to
structural anisotropy [2,3]. Kassinos and Reynolds [3,4]
constructed a differential structure-based model (SBM)
that made use of the model transport equation for the
eddy axis. By introducing hypothetical turbulence ed-
dies with carefully selected properties, and by averaging
over an ensemble of such eddies, they were able to relate
the eddy-axis transport equation to the exact transport
equations of the structure tensors. A schematic repre-
sentation of the eddy-axis and structure tensors associ-
ated with an idealized “eddy” field is shown in Fig. 1.
Later [6, 7], a differential structure-based model making
direct use of the exact transport equations of the struc-
ture tensors was also proposed and successfully applied
to a number of basic benchmark flows.
Closely related to one-point structure-based models is
the Particle Representation Model (PRM) and the Inter-
active Particle Representation Model (IPRM). The PRM
is essentially a reduced Fourier representation retaining
the minimum information beyond one-point that allows
an exact closure of the Rapid Distortion Theory (RDT)
governing equations without using a model. Form a dif-
ferent point of view, the PRM formalism can be thought
of as a real space Monte Carlo type of approach, and
this duality offers a valuable framework for developing
one-point structure-based closures. The IPRM, or Inter-
active Particle Representation Model, is an extension of
the PRM method for flows with weak deformation rates.
The IPRM has been successfully applied to all standard
benchmark cases for homogeneous turbulence. What
makes the IPRM particularly interesting is the concept
of Effective Gradients. In the IPRM, it is postulated that
the nonlinear turbulence-turbulence interactions can be
represented by an effective deformation rate, which acts
on each eddy or particle in addition to the mean gradi-
ents as a result of the deformation caused by the sea of
all other eddies (particles). What is impressive is that
the IPRM transport equations retain the same form as
the RDT (PRM) equations, with just the mean velocity
gradient tensor replaced by the sum of the mean and ef-
fective gradient tensors. The effective gradient tensors
are modeled in terms of the one-point structure tensors
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thus providing the route for closure even at the one-point
level.
Although the performance of the original SBM was con-
sidered quite satisfactory [3, 5–7], it was computation-
ally expensive. For this reason, it was deemed nec-
essary to simplify the approach into an algebraic two-
equation model for engineering use. An effort was initi-
ated in 2001, again at Stanford University, to develop a
simplified two-equation algebraic structure-based model
(ASBM). In the ASBM, the eddy axis concept [3] is used
again, but in an algebraic formulation relating it to the
mean deformation field and the scales of the turbulence
without a transport equation for the structure. Also,
in ASBM the eddy axis concept has been improved by
allowing for flattening of the turbulence eddies in the
presence of mean rotation or shear [8–10].
With the passing of Prof. Reynolds in 2003, and the re-
location of the first author to the University of Cyprus,
the ASBM development effort was transferred to Eu-
rope [11–16]. The development of the ASBM was sup-
ported by a several European grants, while a close col-
laboration has been maintained between the Univer-
sity of Cyprus, ONERA, other European collaborators
and the Center of Turbulence Research at Stanford-
NASA/Ames. One of the key conclusions of a large-scale
European project (WALLTURB) was that the ASBM is
one of a very few new advanced turbulence models that
have the potential to lead to significant improvements
in the performance of CFD codes used in aerospace de-
sign [16].
In a series of recent studies [14, 16–18], the ASBM has
been shown to offer promising performance in flows with
system rotation (e.g. rotated channel flow), separation
(e.g. backward facing step, atmospheric flow over com-
plex terrain), adverse pressure gradients (e.g. asymmet-
ric diffuser flow), and shock-induced flow separation over
the RAE2822 transonic airfoil [19]. In these flows, the
ASBM captures correctly the characteristics of the sep-
arated region and reattachment, including the compo-
nents of the Reynolds stress tensor.

2 Algebraic Structure Based
Model

In a RANS model, the flow is governed by the following
equations:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1
ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂Ui
∂xj

)
− ∂
〈
u′iu
′
j

〉
∂xj

(1)
∂Ui
∂xi

= 0, (2)

where Ui is the ith component of the mean velocity field,
and the

〈
u′iu
′
j

〉
are the components of the Reynolds stress

tensor. In most RANS models, the Reynolds stress ten-
sor components are derived from gradients of the mean
velocity field using the eddy-viscosity concept. In the
ASBM, they are calculated from the statistics of a hypo-
thetical eddy field.

2.1 Structure Tensors

The turbulence structure tensors, as defined in [3] and
[2], are the Reynolds stresses, Rij , the dimensionality,

x1

x1

x1

r11 = 0, d11 = 0, f11 = 1

r11 = 1, d11 = 0, f11 = 0

r11 = α , d11 = 0, f11 = 1−α

(a)

(b)

(c)

a11 = 1

a11 = 1

a11 = 1

d11 = d22 << d33

d22 < d11 << d33

d11 < d22 << d33

(a)

(b)

(c)

a33 → 1

a33 → 1

a33 → 1

>>

>>

>>(d)

(e)

(f)

Figure 1: Idealized “eddy” fields and the associated
eddy-axis and structure tensors. In (a)-(c) the field is
assumed to consist of axisymmetric eddies aligned with
the x1-axis and in (d)-(e) the field consists of flattened
eddies aligned with the x3-axis. Case (a) corresponds to
a vortical eddy, (b) to a jetal eddy and (c) to a helical
eddy.

Dij , and the circulicity, Fij . Dij and Fij contain infor-
mation about the large-scale, energy-bearing structures
that is not conveyed by the componentality information
in Rij .
In the case of homogeneous turbulence, the contractions
of the structure tensors are all twice the turbulent kinetic
energy, i.e. Rii = Dii = Fii = q2 = 2k. Thus, one can
define normalized structure tensors as

rij ≡ Rij/q
2, dij ≡ Dij/q

2, fij ≡ Fij/q
2 . (3)

The constitutive relation

rij + dij + fij = δij (4)

shows that in homogeneous turbulence only two are lin-
early independent.

2.2 Linking the Stresses to the Structure

The eddy-axis concept [3] is used to relate the Reynolds
stress and structure tensors to parameters of a hypothet-
ical turbulent eddy field. Each eddy represents a two-
dimensional turbulence field, and is characterized by a
unit eddy-axis vector ai. The turbulent motion associ-
ated with the eddy can be decomposed into a jetal com-
ponent along the eddy axis, and a vortical component
perpendicular to the eddy axis (see Fig. 1). Averag-
ing over an ensemble of such eddies allows one to relate
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the normalized Reynolds stresses, rij , and the one-point
turbulence structure tensors to the statistics of the eddy
ensemble,

rij =
u′iu
′
j

2k
= (1− φ)

1
2
(δij − aij) + φaij

+ (1− φ)χ[
1
2
(1− anmbmn)δij

− 1
2
(1 + anmbmn)aij − bij + ainbnj + ajnbni]

− γΩTk
ΩT

(εiprapj + εjprapi)

{1
2
[1− χ(1− a+ nmbmn)]δkr + χbkr − χaknbnr},

(5)

dij =
1
2
(δij − aij)

+ χ[−1
2
(1− anmbmn)δij

+
1
2
(1 + anmbmn)aij + bij − (ainbnj + ajnbni)] ,

(6)

fij = δij − rij − dij , (7)

where the eddy-axis tensor, aij = 〈V 2aiaj〉/〈V 2〉, rep-
resents the energy-weighted average direction cosine of
the eddy-axis vector. φ and χ are scalar parameters
that determine the allocation of energy between the jetal
and vortical modes and the flattening of the eddy cross
sections respectively. The helical parameter, γ , is rep-
resentative of the correlation between the jetal and the
vortical modes. Under irrotational RDT γ = 0, but it be-
comes energized under the influence of rotation or weak
deformation. Similarly, rotation can “flatten” the eddies,
so that their cross section becomes non-axisymmetric.
The flattening tensor is

bij =
(Ωi + CbΩfi )(Ωj + CbΩfj )

(Ωk + CbΩfk)(Ωk + CbΩfk)
, Cb = −1.0 , (8)

where Ωi is the mean rotation vector, and Ωfi is the
frame rotation rate vector. A point of departure from
the original SBM approach is that we avoid the direct
use of the eddy-axis transport equation [3] for the sake
of computational efficiency. Instead, in the ASBM we use
an algebraic formulation (which is nevertheless based on
the transport equation), to obtain the eddy-axis tensor.
Thus, the homogeneous eddy-axis tensor is obtained by
applying a rotation transformation to the strained eddy-
axis tensor a∗ij

aij = HikHjla
∗
kl, Hij = δij + hi

Ωij√
Ω2
pp

+ h2
ΩikΩkj
Ω2
pp

(9)

where Ω2
pp = ΩpqΩpq, and Ωpq is the mean rotation rate

tensor. The orthonormality conditions HkiHkj = δij
require

h1 =
√
2h2 − h22/2. (10)

h2 is obtained through RDT for combined homogeneous
plane strain and rotation [8, 20],

h2 =

⎧⎨
⎩2− 2

√
1
2 (1 +

√
1− r) if r ≤ 1

2− 2
√

1
2 (1−

√
1− 1/r) if r ≥ 1

, (11)

where r = (apqΩqrS∗rp)/(S∗knS∗nmamk). The strained a∗ij
is given by

a∗ij =
1
3
δij +

(S∗ika∗kj + S∗jka
∗
ki − 2

3S
∗
mna

∗
nmδij)τ

a0 + 2
√

a21 + τ2S∗kpS
∗
kqa
∗
pq

(12)

where S∗ij = Sij − Skkδij/3 is the traceless strain-rate
tensor with Sij = 1

2 (∂ui/∂xj+∂uj/∂xi), τ is a time scale
of the turbulence, and a0 is a “slow” constant, chosen
here to be 1.6. This choice gives realizable states for the
eddy-axis tensor.

2.3 Wall Blocking

Near the wall, as the flow approaches the no-slip bound-
ary condition, the flow velocity becomes zero by the ac-
tion of viscous forces. The wall normal component of the
velocity falls faster than the tangential components be-
cause of wall blocking which acts at scales larger than the
viscous scales. This makes the velocities near the wall lie
in planes parallel to the wall. In the ASBM, the eddies
close to the wall are postulated to also be parallel to the
wall. This is achieved by introducing a blockage tensor
Bij which reorients the eddies to be parallel to the wall
by defining a wall blocking tensor whose components are
given by

Bij =
φ,iφ,j
φ,kφ,k

φ if φ,kφ,k > 0 (13)

where φ is the solution of the modified Helmholtz equa-
tion:

L2 ∂2φ

∂xk∂xk
= φ (14)

L = CLmax
(
k3/2

ε , Cν
4
√

ν3

ε

)
and φ,i ≡ ∂φ/∂xi. In this

work, CL was chosen to be 0.17 and Cν was chosen to
be 80. At solid walls, φ = 1, and its derivative along
the wall-normal direction φ,n = 0 where xn is the wall-
normal direction.

3 Example Application

The ASBM was coupled with a Navier-Stokes solver
based on the unstructured-grid finite-volume method.
The solver was used to compute flow over a backward-
facing step.
The incompressible RANS equations are solved using an
implicit predictor-corrector method. The computations
are initialized using a converged v2–f solution. The
steady-state solutions using the ASBM are then obtained
by time-marching the solver till convergence is achieved.
A deferred correction approach was used for the ASBM
to ensure stability. Computational results were com-
pared with previously reported experimental results [21],
DNS results [22] and results from the v2–f [23] and k-ω
SST [24] models implemented in the same solver.

3.1 Computational Domain

The computational domain for the backward-facing step
consists of an inlet section of length 3h and height 5h
prior to the sudden expansion, where h is the step height.
After the expansion, the computational domain has an
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outlet section of length 40h and height 6h. The effective
expansion ratio is 1.20. The computational domain has
a width of 0.5h in the spanwise direction, but the present
computations are formally two-dimensional because only
one grid cell was used in the spanwise direction. In the
streamwise direction, the grid consists of 150 cells in total
with a compressed grid spacing in the vicinity of the step.
There are 118 cells along the vertical direction of which
68 are placed within the step (y < h). The grid was
compressed along the vertical direction at the step and
towards the lower wall to ensure y+ < 1.0.

3.2 Boundary Conditions

A profile obtained from a v2–f solution for a fully devel-
oped channel flow was applied at the inlet of each compu-
tational domain. The values of the flow velocity, and the
turbulence scalars, k, ε, and v2, were read from an input
file as a function of inlet height, and the flux of f and φ
were taken to be zero at the inlet. A penalty boundary
condition was applied at the outlet to ensure global mass
conservation within the computational domain. For the
backward facing step, the step-height Reynolds number
Reh ≡ U0h/ν ≈ 5000, where U0 is the mean inlet veloc-
ity, h is the step height, and ν is the viscosity.

Distance from step in step-height units
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Figure 2: Wall static pressure coefficient along the bot-
tom wall: ASBM (—) vs. experiments of [21].
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Figure 3: Skin-friction coefficient on the bottom wall:
DNS (solid gray line), ASBM (solid black line), v2–f
(dashed gray line), & k-ω SST (dashed black line)

4 Results and Discussion
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Figure 4: Mean pressure in the channel predicted by the
different RANS models. Only the ASBM results show
the same profile as the DNS results of [22].

Figure (4) shows the pressure contours within the chan-
nel as calculated by the k–ω shear-stress transport (SST)
model [24], the v2–f model [23], and the ASBM model.
Negative values of the pressure just before the expansion
indicate the presence of a favourable pressure gradient.
Figure (5) shows recirculation regions predicted by the
k–ω SST model, v2–f model, and the ASBM model.
Only the ASBM model is able to correctly predict the
size of the secondary recirculation bubble at the foot of
the step. Figure (2) shows the wall static-pressure coef-
ficient Cp ≡ (p − p0)/ 1

2ρU
2
0 along the bottom wall pre-

dicted by the ASBM and the experimental results of [21].
The ASBM results show good agreement with the ex-
perimental values over the entire distance. Figure (3)
shows the skin friction coefficient Cf ≡ τw/

1
2ρU

2
0 along

the bottom wall where τw is the shear stress measured
at the wall. Predictions from the three different RANS
models are plotted with the DNS results of [22]. Only
the ASBM is able to predict the rise in the skin fric-
tion due to the secondary bubble also seen in the DNS
results. Past the recirculation region, both the ASBM
and the v2–f model show good agreement with the DNS
results. The reattachment length predicted by DNS is
Xr = 6.39 in step-height units. The v2–f model’s pre-
diction of Xr = 6.31 is the closest to the DNS results
compared to the ASBM (Xr = 6.66) and the k-ω SST
(Xr = 5.82) results.
Figure (6) compares the ASBM computational results
with the experimental results of [21] for streamwise ve-
locity (Figure (6)(a)) and the Reynolds stresses 〈u′u′〉,
〈u′v′〉, and 〈v′v′〉 (Figure (6)(b) – (d)) at different sta-
tions along the flow direction. The ASBM results for
the velocity correspond very well with the experimental
values. The ASBM is also predicts the initial rise and
subsequent fall in the turbulent stresses as seen experi-
mentally.
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Figure 6: ASBM predictions(—) vs. the experiments of [21] for flow over a backward-facing step.

(a) k-ω SST model. Xr = 5.82.

(b) v2–f model. Xr = 6.31.

(c) ASBM. Xr = 6.66.

Figure 5: Isopleths of the mean stream function ϕ. Only
the ASBM model predicts the presence of the secondary
recirculation bubble.

5 Current Developments and Fu-
ture Directions

Recently, the structure dimensionality concept has been
extended for dispersed phase through the introduction of

the Dispersed Phase Structure Dimensionality (DPSD)
tensor,

Dθ
ij =< Φz,iΦz,j > , (15)

where,
∇2Φ = ∇θ′, (16)

and θ′ is the turbulent fluctuation of the dispersed scalar.
In a series of studies it has been shown that the Dis-
persed Phase Structure Dimensionality (DPSD) tensor
accurately describes the large-scale structures in a tur-
bulent dispersed phase. An example is shown in Fig-
ure (7) for the case of irrotational axisymmetric ex-
pansion where the mean velocity gradient is given by
S22 = S33 = −S11/2 = S. The initial turbulence field
is isotropic with zero scalar fluctuations and a uniform
mean scalar gradient dΘ/dx2 = Γ. The DPSD tensor
shows that at large total strain (C ≈ 10), the scalar fluc-
tuation field is organized in pancake like structures that
are thin in the axial direction (dθ11 → 1) and long in the
lateral directions (dθ22 ≈θ33→ 0). An effort is currently
under development at the University of Cyprus to use
these ideas for the construction of an ASBM that will
include such effects, with the aim of using the extended
model in heat transfer and dispersion modeling.
The University of Cyprus is collaborating with various
groups around the world that are interested in the fur-
ther development of the structure-based approach. In
collaboration with ONERA it was shown that the ASBM
can be coupled with the k-ω scale equations of the
widespread BSL model in the process proving a much
more complete description of the turbulence. The cou-
pling requires minimal modifications to the standard
BSL scale equations, thus providing an easy route to in-
corporating the ASBM technology in current engineering
codes. In collaboration with the Center for Turbulence
Research (CTR), it was similarly shown that the ASBM
structure module can be successfully coupled with the
v2-f scale equations. While hybrid versions of the model
are not the end objective, they might provide an easy im-
plementation path for engineers wishing to quickly test
the basic model performance before investing the time
to implement the full ASBM description.
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Figure 7: The DPSD for passive scalar fluctuations in
rapid (RDT) irrotational axisymmetric expansion and
the corresponding magnitude iso-contours. Lines repre-
sent exact RDT predictions via the PRM and symbols
results from 512x256x256 DNS.

Recently, the model has been tested with excellent re-
sults in benchmark cases for flow over complex ter-
rain [18]. Furthermore, the group in New Zealand has
successfully coupled the ASBM with wall-functions and
computed very high Reynolds number atmospheric flows.
Clearly, there is still more testing that has to be done,
in strongly three-dimensional and unsteady aerodynamic
flows in particular, but the outlook is promising. Com-
putational efficiency and stability are also being contin-
uously improved as the model is tested in increasingly
more demanding flows.
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1 Introduction

A wide number of studies in fluid turbulence can be
related either to the modelling of engineering and
environmental flows (“turbulent fluid mechanics”) or to
specialists of intermittency and scaling (say “physics
for intermittency”). The overlapping is small, except
when looking at interscale energy transfer applicable
to sub-grid scale modelling in LES. Can SIG 35 try to
reconcile these almost disconnected approaches?

A very interesting starting point is to model the trans-
port of velocity gradients. In particular, modeling the
coarse-grained velocity gradient tensor is very useful in
LES. The subject has attracted some theoretical and nu-
merical attention lately, as shown in the recent review [1].
These developments, such as those by Chertkov et al.
1999 [2], can now even be tested in the laboratory [3].

2 Modeling the velocity gradient
tensor dynamics in turbulence

2.1 Transport equation

Our starting point is the transport equation for the (fluc-
tuating) velocity gradient tensor

Aij =
∂ui
∂xj

. (1)

A generic transport equation, describing the time evo-
lution of A following fluid particles, can be derived by
taking the gradient of the Navier-Stokes equation. For
an incompressible flow, this equation can be written as

dAij
dt

= −
(
AikAkj − 1

3
Tr(A2)δij

)

+ H
(p)
ij +H

(v)
ij +

∂fi
∂xj

, (2)

where d/dt is the Lagrangian derivative, fi is a possi-
ble additional body force (namely Coriolis, buoyancy or
Lorentz),

H
(p)
ij = −

(
∂2p

∂xi∂xj
− 1
3

∂2p

∂xk∂xk
δij

)
(3)

is the anisotropic, traceless part of the presure Hessian,
and

H
(v)
ij = ν

∂2Aij
∂xk∂xk

(4)

is the viscous term.

Eq. (2) is a set of nine coupled ordinary differential equa-
tions, in which the terms H(p)

ij and H
(v)
ij need to be mod-

eled. Various closures, listed in the subsection 2.3, have
been proposed in the last decades. For a recent review
of these models, the reader can refer to [1].

2.2 Gradients & increments, Lagrangian
approach, preliminary remarks

As stressed in the foreword of this special issue, many
studies start with the velocity increment, for instance to
look at statistical structure functions, or

δu = u(x+ r)− u(x). (5)

For a small separation vector r and assuming smoothness
of the velocity field, the velocity gradient is easily found
as the Taylor’s limit, or δu = Adr, so that a model for
the velocity gradient tensor derives from a model for the
velocity increment. Of course, this relationship is not
consistent with the K41 scaling δu ∼ r1/3 at significant
r values, so that special care is needed depending on the
scale of the velocity increment. For instance, the “Delta-
vee” models can be used for this purpose of recovering
some properties of the velocity gradient tensor, but they
do not include in general all the components of the veloc-
ity increment, only a transverse one and a longitudinal
one.
It is perhaps useful to recall some useful Lagrangian
or semi-Lagrangian relationships before discussing the
models for transport equations. The mapping of Eule-
rian x to Lagrangian coordinates X is given by the flow
trajectories. Assuming smoothness, it is possible to dif-
ferentiate the trajectory equation, as

dxi = uidt+ FijdXj ,

so that the important semi-Lagrangian tensor (often
called gradient of displacement tensor, or Cauchy ma-
trix in [18]), is found as

Fij(X, t) =
∂xi
∂Xj

. (6)
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The Lagrangian time-derivative of F gives

dFij/dt = AinFnj , (7)

indicating that F is a time- accumulated deformation
tensor following the trajectories, or F = exp(

∫ t
Adt).

Of course, it follows that

A =
dF

dt
·F−1,

so that the velocity gradient tensor simply derives from
the Cauchy matrix.
Decomposition of Aij into a symmetric part Sij and an
antisymmetric one reintroduces the vorticity vector ω,
as

Aij = Sij + (1/2)εinjωn, ωi = εinjAjn.

It is obvious that the antisymmetric part of Eq. (2) gives
the classical Helmholtz equation for the vorticity vector,
with no contribution from the pressure Hessian because
it is a symmetric tensor. On the other hand, the 6 com-
ponents of Sij are directly affected by the pressure Hes-
sian, whose only the trace, or pressure Laplacian, is given
in terms of Aij (classical Poisson equation ∇2p = −A2 ).
Looking at the Cauchy matrix, satisfyingDetF = 1 from
the incompressibility constraint, a multiplicative decom-
position is suggested as

F = DQ, (8)

in term of a product of a symmetric matrix (accumulated
strain) by an orthogonal one (accumulated rotation), the
first one being identified by forming the Cauchy-Green
tensor as C = FF t = D2.

2.3 Models

The simplest approach of the closure of Eq. (2) consists
in neglecting the terms Eq. (3) and Eq. (4). The re-
sulting system, in which the time evolution of A is fully
determined by its initial condition, has been first studied
by Vieillefosse [4,5]. Unfortunately, it can be shown that
the solution Aij of this so-called Restricted Euler dynam-
ics exhibits a finite-time singularity for almost any initial
condition. However, this solution also shows encouraging
features as the singularity is approached. In particular,
the predicted structure of the velocity gradient tensor
shows a tendency:

• to create disk-like structures, in the sense that a
small, initially spherical fluid element moving with
the flow extends in two dimensions and contracts
in the third one. This is reflected by the fact that
the strain tensor S (symmetric part of A) has two
positive eigenvalues and a negative one (the sum of
these eigenvalues must be equal to zero to satisfy
the incompressibility condition);

• to align the vorticity vector ω (antisymmetric part
of A) with the eigenvector of S associated to its
(positive) intermediate eigenvalue.

These two tendencies are characteristic trends of 3D
turbulence that have been observed in many experiments
and numerical simulations [6–9].

To go further than this crude approximation of Eq. (2),
more accurate closures have been proposed. One can
mention in particular:

• a linear damping model [10], in which

H
(p)
ij +H

(v)
ij = −Aij/τ0, (9)

where τ0 is a relaxation timescale;

• a stochastic diffusion model with prescribed log-
normal dissipation [11], in whichH

(p)
ij +H

(v)
ij is mod-

eled as the sum of a drift term meant to model parts
of the deviatoric part of the pressure Hessian, and
of a stochastic term;

• a Lagrangian linear diffusion model [12], focusing
on the viscous term Eq. (4) and modeling it as a
function of the Cauchy-Green tensor

C = FFt, (10)

where Fij has been precedently introduced;

• the recent fluid deformation approximation [13], in
which H

(p)
ij + H

(v)
ij is modeled as the sum of three

terms: two of them are determistic functions of
the “recent Cauchy-Green tensor” CτK , whereas the
third one is analogous to the stochastic term of the
Lagrangian linear diffusion model [12]. The tensor
CτK

is expressed in terms of simple matrix expo-
nentials:

CτK
= eτK AeτK At

, (11)
from Eq. (7)

Recourse to the Cauchy-Green tensor, with possibly a
truncated time-memory, asks the questions: Why the
pressure Hessian is “more spherical” in Lagrangian coor-
dinates, or ∂2p/(∂Xi∂Xj), than in Eulerian coordinates?
why the orthogonal matrix in Eq. (8) is not involved in
the closure model?

3 Modeling the coarse-grained
velocity gradient tensor dy-
namics in turbulence

Another quantity of interest in turbulence modeling is
the coarse-grained velocity gradient tensor, defined as:

Mij =
1
V

∫
Ω
d3x

∂ui
∂xj

, (12)

where V is the volume of the domain Ω.

A model for the Lagrangian dynamics of M has been
proposed by Chertkov, Pumir and Shraiman [2]. This
so-called “tetrad model” is based on a particle represen-
tation of the velocity of four fluid particles. The model
is formulated in terms of two coupled stochastic differen-
tial equations, modeling the evolution of M, the coarse-
grained velocity gradient tensor, along with the three
vectors ρi (i = 1, 2, 3), which describe the shape of the
tetrad with respect to its center of mass,

dMab

dt
+ (1− α)

(
M2
ab −ΠabTr(M2)

)
= ηab, (13)

dρia
dt

+ ρib.Mba = uia, (14)

Πab = kiak
i
b/Tr(kkt), (15)
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Figure 1: Scale dependence of the joint PDF of the
normalized R and Q invariants, solutions of the tetrad
model: Q = − 1

2Tr(M2), R = − 1
3Tr(M3). The solu-

tions corresponding to α = 0.3, Cu = 0.15 and Cη = 1
are represented at scale (a) |ρ| = L/2, (b) |ρ| = L/4 and
(c) |ρ| = L/16. The evolution of the shape of the PDF
is very limited over the range of scales studied here. The
isoprobability lines shown on the graphs correspond to
probability levels 10−n, where n is an integer (n ≤ 6).

where the matrix k is the inverse of ρ. In the notation
used here, the lower indices a, b,... refer to the space di-
mension and the upper indices i, j,... specify one among
the three vectors describing the shape of the tetrad. The
deterministic terms on the left-hand side of Eq. (13) and
Eq. (14) represent the effect of the dynamics induced by
scales of order |ρ|. The matrix Π, defined by Eq. (15), is
symmetric with a trace 1; it provides a coupling of the
geometry with the dynamics of M. Lastly, the stochas-
tic terms in Eq. (13) and Eq. (14), η and u, represent
the random effect of the small scales of motion. They
are represented by Gaussian, white in time noise terms,
with a scale dependence prescribed by dimensional con-
siderations, consistent with the Kolmogorov scaling,

〈ηab(0)ηcd(t)〉 = Cηδ(t)
ε

ρ2

(
δacδbd − 1

3
δabδcd

)
, (16)

〈uia(0)ujb(t)〉 = Cuδ(t)
√

Tr(MMt)(δabρ2δij − ρiaρ
j
b),
(17)

where ρ2 = Tr(ρρt). The noise term acting on ρ, u, is
assumed here to act only in the direction transverse to
the nine-dimensional vector ρ, which is not expected to
be a significant restriction. α ∈]0; 1[, Cη > 0 and Cu > 0
are dimensionless parameters.

Although the solution of this stochastic model, written
as a set of 14 coupled ODEs, can be formally expressed
in terms of path integrals, its numerical determination
in terms of the Monte-Carlo method is very challenging,
as very few configurations contribute effectively to the
statistical weight. For this reason the model was first
solved in the semiclassical approximation [14,15]. These
results allowed to design more accurate methods of reso-
lution [16]. More recently, a full Monte-Carlo simulation
of the tetrad model was carried out [17], by using an
algorithm based on the importance sampling method,
which consists of identifying and sampling preferentially
the configurations that are likely to correspond to a large
statistical weight, and selectively rejecting configura-
tions with a small statistical weight. The algorithm led
to an efficient numerical determination of the solutions
of the model and allowed to determine their qualita-
tive behaviour as a function of scale (see e.g. Figure (1)).

By using this numerical method, Pumir and Naso found
that the moments of order n ≤ 4 of the solutions of the
tetrad model scale with the coarse-graining scale and
that the scaling exponents are very close to the predic-
tions of the Kolmogorov theory. The model qualitatively
reproduces quite well the statistics concerning the local
structure of the flow. However, they also found that
the model generally tends to predict an excess of strain
compared to vorticity. Thus, their results show that
while some physical aspects are not fully captured by
the model, the latter leads to a very good description of
several important qualitative properties of real turbulent
flows.

4 Perspectives

This global approach can be generalized to anisotropic
flows, first in the presence of body forces, then in the
presence of coupled fields (buoyancy scalar, magnetic
field). In addition to the basic isotropic case, three cases
of increasing complexity will be addressed:
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• Rotating turbulence. Attempts by Yi Li to gener-
alize the “isotropic” delta-vee model are not com-
pletely satisfactory. Long experience of Claude
Cambon’s team in both inertial wave turbulence
and anisotropic two-point closures is expected to im-
prove the synergy [18,19].

• Turbulence with buoyancy in a stably stratified
fluid, rotating or not. In addition to the effect of the
buoyancy force, as a body force involved in modi-
fied Navier-Stokes equations, the transport equation
must be considered for the gradient of the active
buoyancy scalar.

• Turbulence with coupled MHD effects, with and
without rotation. Applications will concern turbu-
lent liquid metal in engineering and for geodynamo.
In this case, the additional body force involved in
Navier-Stokes equations is the Lorentz force; the
coupled field is the fluctuating magnetic field: this
is an active vector, because of its feedback via the
Lorentz force.

It is worth mentioning that two steps have already been
made in this direction. Naso, Chertkov and Pumir inves-
tigated the statistics of the coarse-grained velocity gra-
dient tensor M predicted by the tetrad model in the
presence of a large-scale shear [20]. Li investigated the
statistics of the velocity gradient tensor A in a rotat-
ing frame [21] predicted by the recent fluid deformation
approximation from Chevillard and Meneveau [13].
Briefs comments in subsection 2.2 suggest to study the
tensor F prior to the velocity gradient tensor. Studies
by Koji Ohkitani, including DNS, are encouraging for
this way of research, as well as Lagrangian relationship
for Euler equations reminded in [18]. Finally, both ten-
sors A and F are crucially involved in Rapid Distortion
Theory, as recalled in the foreword. These quantities are
related to an ideal, too simple, base flow, in “homoge-
neous” RDT, but recourse to a localized form, as WKB
RDT, can be informative.
We do not discuss here some counterparts of this analy-
sis for a scalar gradient, even firstly for the gradient of
a passive scalar, which could be re-investigated before,
or in the same time, as the “active” buoyancy scalar in
stratified turbulence.
About synthetic models of turbulence, one can mention
that KS (Kinematic Simulation) is remarkably consistent
with DNS and esperimental results, from A. Pumir and
Tabeling, for triangles and tetrahedrons of fluid particles
[22]. These KS studies were extended to particles with
inertia and effect of gravity [23].
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1 Introduction

Important aspects of turbulence, subjected to mean
shear, solid body rotation, density stratification and/or
coupling with magnetohydrodynamics, can be under-
stood in the context of Homogeneous Anisotropic Turbu-
lence (HAT hereinafter), without explicit effect of solid
boundaries.
Several studies, with the same starting point (see the
foreword) range from linear theory, either applied to the
prediction of statistics (so called Rapid Distortion The-
ory, RDT hereinafter), to stability of unimodal distur-
bances (Bayly 1986, Craik 1986, ref. in [19]), or to
pseudo-spectral DNS in deformed cordinates (Rogallo
1981, Lesur 2007).
The other paper in the present issue, Axisymmetric
theory and DNS in rotating, stratified, and MHD
turbulence, deals with the cases without mean shear,
in which axisymmetry is consistent with basic equations,
and in which a spectral nonlinear theory can be applied
in addition to DNS. These cases are essentially “with-
out production”, so that nonlinear dynamics and related
modification of inter-scale energy cascade mediated by
triple correlations is the main problem. Linear theory is
useful for giving eigenmodes and dispersion laws, with a
view to improve their nonlinear analysis. For instance,
the basic linear Green’s function, obtained analytically
is a useful building block to incorporate in generalized
EDQNM.
On the other hand, linear theory is crucial here, in the
presence of mean shear or mean deformation, and the
linear Green’s function is often very complex. This yields
a sophisticated “energy production” mechanism, which is
more physical than an artificial forcing.

2 A generalized RDT approach

A historical survey of “Rapid Distortion Theory”, prob-
ably better coined as “Linear analysis in terms of mean-
flow-advected Fourier modes”, is drawn in the foreword.
Very complete review of the essentials are given in [23]
and in [19] , at the cross-road of three communities using
different terminologies and often publishing in different
journals: “RDT” historical community, Applied mathe-
matics for hydrodynamic instabilities, Astrophysics. For
instance, “shear wave” corresponds to “Kelvin mode”
and is related to “Rogallo space”. We have also re-
called to which extent fully nonlinear computations using
pseudo-spectral DNS in deformed boxes (Orszag / Pat-

terson / Rogallo) are a natural extension of “RDT”.
As a recap, our strategy for using generalized RDT, and
to extend it towards nonlinear DNS, is generic with the
following essentials:

1. Systematic use of a mean (or base) flow which is an
exact solution of Euler equations: This “admissibil-
ity condition” allows us to balance the gyroscopic
torque in a physical way, looking at the conserva-
tion of (mean) absolute vorticity derived from Euler
equations.

2. Decomposition of the fluctuating flow in terms of
advected Fourier modes with time-dependent wave-
vectors. These modes are called “Kelvin modes”
(Applied Mathematics, probably following H. K.
Moffatt in RDT) and “shear waves” (Astrophysics).
The variable X, with mean trajectory equation
xi = Fij(t, t0)Xj corresponds to “Rogallo space”
(engineering).

3. Fluctuating velocity modes are split using the
Craya-Herring frame of reference, resulting in a min-
imal number (two) of solenoidal components, of
toroidal and poloidal type.

4. The linear solution is generated by a complete de-
terministic Green’s function, applied to the velocity-
buoyancy-magnetic fluctuating field, for arbitrary
initial data and possibly arbitrary forcing, prior to
any calculation of statistics.

5. Classical conservation of potential vorticity is ap-
plied. In the RDT context, this yields to define an
invariant of the motion, as the linearized absolute
potential vorticity, in which the vorticity of the mean
shear is involved.

6. Prediction of both synthetic realizations of the ve-
locity field, as in KS (Kinematic simulation), and
prediction of statistical quantities, as in conven-
tional RDT, are given, in order to sweep the param-
eter range before applying much more costly DNS.

3 Rotating shear and beyond,
shearing sheet approximation

The distorting mean shear flow sketched in Figure (1)
(left, no rotation) is characterized by the following con-
stant mean velocity gradient matrix and displacement
(Cauchy) matrix:

Aij = Sδi1δj2, Fij(t, t0) = δij +Aij(t− t0). (1)
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The indices 1, 2 and 3 refer to streamwise, cross-gradient,
and spanwise directions. The general RDT solution by
Moffatt [15] (1967, see the foreword) can be expressed
in terms of two, toroidal and poloidal, velocity compo-
nents. Several studies, such as [20], addressed the linear
response of turbulence to the shear with spanwise rota-
tion of rate Ω. This gives a model useful for predicting
stabilisation or destabilisation by rotation in shear flows
in term of the ratio 2Ω/S.
In this context of pure plane shear with spanwise rota-
tion, the shearing sheet (or shearing box) approximation
is a very important avatar of RDT and pseudo-spectral
DNS in deformed box, with several applications to rotat-
ing accretion discs in astrophysics. The limit of a Taylor
Couette flow with differential rotation in the radial (r)
direction Ω̃(r) ∼ r−q is considered, so that the equivalent
shear rate is

S = −rdΩ̃/dr,

at a given r. Accordingly, streamwise, cross-gradient and
spanwise directions in Cartesian coordinates correspond
to peripheral, radial and axial directions, respectively, in
cylindrical coordinates. For instance, the k1 = 0 mode
is called “axisymmetric mode” in the astrophysical con-
text of rotating flows with radial variation of the angular
velocity. The “Bradshaw (or rotational Richardson num-
ber) criterion” for the stability of rotating shear is related
to the epicyclic frequency in astrophysics

κ2 = 2Ω(2Ω + S),

and κ2 < 0, or −1 < Ω/S < 0 characterizes exponential
instabillity in a simplified “pressure-less” analysis. For
anticyclonic rotation of astrophysical discs, it is found
that κ2 = 2(2 − q)Ω̃, with the important result of the
stability of the Keplerian disc, for which q = 3/2 and
Ω/S = −4/3, in this context.
Given the evidence that Keplerian accretion discs are
turbulent, other effects were investigated. In our gener-
alized RDT context, we have revisited stratorotational
instability, in the presence of additional density strati-
fication and buoyancy force, and magnetorotational in-
stability (MRI) for magnetized discs. Other useful sta-
bility criteria are recovered and generalized, using linear
theory, the Ertel theorem for conservation of absolute
potential vorticity and its new established counterpart
in MHD, replacing the vorticity by the magnetic vector
potential [25].
For all cases subjected to the mean shear, even in the
presence of additional body forces, Coriolis, buoyancy
and Lorentz, analytical laws directly appear for distur-
bances with k1 = 0, or equivalently with infinite wave-
length in the streamwise direction. For instance, in
magnetized accretion discs, magnetorotational instabil-
ity (MRI) occurs at k1 = 0 when the vertical magnetic
tension is less than the centrifugal force intensity, in
agreement with previous stability analyses (e.g. Bal-
bus & Hawley, A. P. J., 1991). A systematic use of
the Levinson’s theorem allows to treat the case k1 �= 0,
except for some combinations of mean flow parameters
with dominant rotation. Cases with and without MHD
coupling, or for “active” and “dead” accretion discs, are
investigated [25]. Generalized RDT offers very promis-
ing perspectives for transient growth and mode coupling
in the context of rotating stratified shear flows, mainly
discussed in the baroclinic context here. As in former
meetings from the Henri Bénard PC, e.g. ASTROFLU
in 2008, close collaboration between specialists of fluid
mechanics and astrophysicists is encouraged.
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Figure 1: Sketch of the baroclinic mean flow.

Figure 2: Neutral curves for the baroclinic flow obtained
by RDT analysis for k1 = 0 modes [21]. The figure shows
the linear stability bound Ri = 1 in the (Ri, θ) plane.

4 Revisiting instability and tur-
bulence in the baroclinic con-
text

Combined effects of rotation, stratification and shear are
a common feature of geophysical fluid dynamics. The
baroclinic context, addressed by [17] as well, is character-
ized by a superposition of three coupled phenomena: (a)
the Coriolis force, caused by earth rotation in geophysi-
cal flows; (b) stable stratification due to density gradients
in the atmosphere, which lead to buoyancy forces in the
vertical direction; (c) high vertical velocity gradients, as
at the altitude of the tropopause in atmospheric flows,
in the form of jet streams, which, in first approximation,
are modelled by homogeneous shear. Following the intro-
duction given above, the baroclinic context is addressed
using “RDT” and DNS.
The first studies on baroclinic instability where done by
Charney (1947) [4] using quasi-geostrophic equations in
the β-plane approximation. He derived a necessary con-
dition for instability to occur formulated simply by an
inequality implying the Rossby radius of deformation.
Further contribution by Eady (1949) [8] using the f -
plane approximation was later added. Eady considered a

R
ea
l( u

(2
))

τ = tS

Figure 3: Transitional growth of the u(2) velocity com-
ponent observed in RDT for k1 = 10−3. Left: with non-
zero initial potential vorticity and strong coupling with
the vortex mode. Right: zero initial potential vorticity
(wave mode).
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simpler model — a Couette-like configuration — of the
atmosphere and obtained an instability condition rest-
ing on a critical wavenumber [16]. Unbounded shear is
considered here and we also place the study within the
f -plane approximation, or constant system vorticity.
Interest of “admissibility conditions” (Craya 1958, Craik
1989) is illustrated as for the precessing flow case in Sec-
tion 5: The misalignment of (vertical) system rotation
and (spanwise) mean-shear-vorticity induces a mean vor-
ticity component in the streamwise direction, and this is
exactly balanced by an additional buoyancy gradient in
the horizontal direction. In other words, the fact that
the mean flow ought to be an exact solution of Euler-
Boussinesq equations implies a constraint on mean ab-
solute vorticity, which amounts to the “geostrophic front
adjustment” in geophysical flows. Accordingly, combi-
nation of both vertical and additional horizontal mean
stratification results in tilting the isopycnal lines, trig-
gering the baroclinic instability.
Investigations of homogeneous turbulent flows submit-
ted to the separate effects of homogeneous shear, stable
vertical stratification or rotation were done in the past
decade [2, 9, 10, 13, 20]. Here, we focus on the following
new approach: RDT and Direct Numerical Simulation
(DNS) of homogeneous turbulence including the com-
plete coupled three previous distorsions. Unlike the pre-
viously mentioned contexts, the baroclinic instability is
a reservoir of energy which does not impose to add an ar-
tificial forcing to the simulations, or to have to deal with
decaying flows. The aim of our study is first to provide a
detailed characterization of the Eulerian properties of de-
velopped baroclinic turbulence. The parametric space is
4-dimensional (Pr, Re, Ri, εB), including the properties
of turbulence itself, Reynolds number, cut-off wavenum-
bers, but also the choice of the intensities of rotation,
stratification and shear. A reduction of the parametric
space is obtained by considering the Richardson number
defined as Ri = N2/S2 and the baroclinic parameter
εB = Sf/N2 which is also the mean slant angle of the
isodensity surfaces. Here, S = ∂yUx is the mean veloc-
ity gradient, N = (−g∂yρ/ρ0)1/2 is the Brunt-Väisälä
frequency and f = 2Ω is the rotation rate. We shall in-
vestigate ranges of these parameters between [0 : 2] for
Ri and [0 : 1] for εB .

4.1 Linear theory, towards mode cou-
pling and transient growth

The basic problem, for stability analysis or RDT predic-
tion, amounts to solve an initial-value system of ODE
(Ordinary Differential Equations). This is a 2-rank sys-
tem of ordinary equations with time-dependent coeffi-
cients using the general method (items (2) and (3) in Sec-
tion 2): The fluctuating field in 5 components in physical
space, 3 components for the velocity, one for the buoy-
ancy and one for the pressure, reduces to a 3-component
one in solenoidal Fourier space (Craya-Herring space),
which generate toroidal kinetic, poloidal kinetic, and po-
tential energy, respectively. The rank of the system is
still reduced to a non-homogeneous system of two equa-
tions, thanks to item (5).
As discussed before, stability is analytically investigated
at k1 = 0, yielding the diagram in Figure (2) from [21].
It is shown that the domain of exponential instability
can be shifted towards Ri = 1. This domain is restricted
to Ri < 0 (unstable stratification) for stratified shear
flows —without rotation— in RDT, and only extended to

small positive values Ri ∼ 0.1 using DNS, as investigated
by [10].
In addition to investigation of exponential instabil-
ity, RDT is capable of predicting dramatic — even if
algebraic— transient growth, as a non-standard non-
modal stability analysis. This is due to the fact that
spatial structure of modes, advected Fourier modes in
RDT, is prescribed, but not at all their temporal de-
pendence when solving the initial-value, linear system
of ODE. Mode coupling underlying this dramatic tran-
sient growth can be related to a generalized wave-vortex
decomposition [3], in which the “vortex” mode is the
linearized potential vorticity mode. In Figure (3), it is
shown that the transient growth is important only for
nonzero value of the vortex mode, in a domain Ri > 1
shown as “exponentially” stable.
The linear stability analysis of Salhi & Cambon [21] and
in [3] is continued here using a stochastic RDT-based
Kinematic Simulation model, whose results are com-
pared to DNS ones.

4.2 DNS results, and perspectives

The Navier-stokes equations in the Boussinesq approxi-
mation are solved using pseudo-spectral Direct Numer-
ical Simulation. Periodicity is assumed in the three di-
rections. Under the action of shear, the mesh is de-
formed and a periodic remeshing is needed using the al-
gorithm by Rogallo [18] (the anisotropic adaptation of
the Orszag-Patterson algorithm) in spectral space. De-
alisasing is done following Delorme [6] method. The code
used in this study is a MPI-based parallel code : the
turbulence box is cut into slabs following the algorithm
by Coleman [5]. Time-advancing is done according to
the third order Runge-Kutta (RK3) method. Lastly, the
rotational form of the non-linear term has been imple-
mented.
We start by considering two-point spectra of Eulerian
velocity and buoyancy fields, as well as the evolution
of additional scalars which are introduced in the flow,
with different Schmidt numbers. The time evolution of
quantities such as the deviatoric part of the Reynolds
stress tensor, the componentality and dimensionality
tensors [1, 11], potential and kinetic energy directional
spectra are analized to bring out and understand the
complex anisotropic structure of the flow. A link with
extended structure functions is also proposed, in order to
assess the possible application, or disagreement, of scal-
ings available for isotropic turbulence in the context of
Kolmogorov theory. We will also study two-point corre-
lations for characterizing the turbulent structures, and
their properties. Large scale structures will be quanti-
fied with directional correlation length obtained from the
velocity correlation tensor, whereas two-point vorticity
correlations put to the fore smaller turbulent structures.
The Lagrangian properties are also studied, and related
to Eulerian data, especially considering the dual char-
acterization of anisotropy. To refine our study, we thus
obtain results concerning mixing properties of the flow by
looking at both the stratifying agent concentration (see
for instance the distribution of buoyancy on Figure (4))
and passive scalars advection (on Figure (5)). We also
put the emphasis on the analysis of possibly unstable dy-
namics of turbulence within the baroclinic context, in a
second part. Inertial transfers will be investigated, con-
sidering energy exchanges between the kinematic and the
potential modes, but also the interscale and directional
energy drain. This structuring of the flow, of nonlin-
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Figure 4: Buoyancy in the vertical-longitudinal plane
for Ri = 0.99 and εB = 0.2 at time τ = tS = 13.2.
Reλ(0) = 66. DNS 256 × 384 × 256. G. Simon, PhD
thesis (2007).

Figure 5: Passive scalar distribution in the vertical-
longitudinal plane. DNS with 512x768x512 degrees of
freedom with Richardson number Ri = 0.5 and baroclin-
icity parameter εB = 0.2. Reλ(0) = 122 and Sk

εν
= 4.55.

With εν the kinetic energy dissipation. τ = tS = 7.

ear, irreversible nature since it is due to quadratic terms
in the equations, is also compared to the predictions
of linear theory (often called Rapid Distorsion Theory,
RDT). It provides lots of valuable information on the
spectral energy distribution reorganization by the mere
body forces (Coriolis and buoyancy) and shear. Since
RDT is also computationally much lighter than DNS,
it also permits a preliminary opening of the parametric
space, allowing to choose the most relevant parameters
for the high resolution simulations. At zero baroclin-
icity, the numerical results are checked with the ones
by Jacobitz, Sarkar and van Atta (1997). New results
show the kinetic energy growth rate and the develop-
ment of Reynolds stress tensor anisotropy. Finally, some
passive scalar diffusion visualizations are presented (see
Figure (5)) showing that mixing is typically structured
in the stable case with very different horizontal layers.

5 Precessing flows

Very recently, the interest for such flows and related
above-mentioned techniques was renewed with precess-
ing rotating flows. It can be shown that the gyroscopic
torque induced by the misalignment of main solid body
rotation and weak additional precessing rotation (see
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Figure 6: Sketch of the precessing mean flow. Figure
taken from [22].
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Figure 7: Elliptical streamlines of the precessing flow.
Figure taken from [22].

Figure (6)) can be exactly balanced by an additional
shear [22]. The resulting background mean flow is char-
acterized by elliptical streamlines (see Figure (7)), so
that it can trigger instabilities for the fluctuating part
very close to the generic elliptical flow instability. Ap-
plication of the Rogallo technique to the case of mean
elliptical streamlines was addressed by a single, almost
unpublished, study (Blaisdell and Shariff, CTR Annual
Briefs, 1996), and this merits to be revisited and ex-
tended with new flow cases. In addition to technical
advantages — no need for periodic remeshing with inter-
polation as for unclosed streamlines— , the precessing
flow case present interest for geophysical and astrophysi-
cal applications, including MHD [24], such as the geody-
namo in the earth’s core, and allows us to explore a new
route to turbulence and mixing via generic instabilities.
In the unbounded case at least, ellipticity is not given a
priori as in the conventional “elliptical flow instability”
(e.g. Bayly 1986) but results from the sole gyroscopic
torque balanced by the shear, and is completely con-
trolled by the Poincaré parameter, ratio of precessing to
main angular velocity. Recent theoretical, experimen-
tal, and numerical studies are carried out in different
teams, such as the one by Shigeo Kida (Tokyo), IRPHE
(Marseille), Observatoire de Meudon (near Paris), and
in Dresden, but this list is far to be exhaustive.

6 Perspectives

Generalized RDT can be used as a non-standard tool
of linear stability analysis, predicting both exponential
instability and algebraic dramatic transient growth by
wave-vortex mode coupling. In addition, it remains a
predictive model for classical Eulerian statistics, and, in-
corporated in KS, gives also access to random realiza-
tions and Lagrangian statistics. Nonlinear effects are in-
vestigated in pseudo-spectral DNS in a comoving frame,
which follow the characteric curves given by RDT and
reproduce their linear operators with good precision.
Strong efforts are done to increase the resolution and
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therefore the Reynolds numbers in these DNS. Search
for marginal nonlinear stability, with an almost balance
between production and dissipation, is a very promis-
ing way, extending to baroclinic and precessing effects
the study of, e.g, stratified shear flow [10]. Cumulative
errors for long-time evolution, especially in the case of
transient growth, are probably important in DNS due to
the periodic remeshing in time for mean flows with rec-
tilinear streamlines. This drawback is avoided for mean
flows with close streamlines, such as the elliptic ones re-
covered in precessing flows. New DNS have to be done
in this case.
For long-term perspectives, effects of confinment could
be incorporated in DNS via immersed boundary condi-
tions and penalisation technique. Modelling of simple
boundary effects are investigated in close connection with
our linear and nonlinear statistical equations in Fourier
space (Lin type), as suggested by some recent analyses
of the plane Couette flow [12].
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Abstract

Turbulence is a fascinating mixture of randomness and
coherence. On the one hand, the randomness of the
phenomenon naturally motivates the use of a statistical
characterisation of the turbulent flow properties and the
search for theories that can describe and predict these
statistics. The coherence, on the other hand, makes it
tempting to look at the intriguing beauty of instanta-
neous vorticity fields and to identify generic mechanisms
that describe the dynamics of coherent flow structures.
Both approaches are complementary, but in general it is
hard to transpose concepts of one approach to the other.
For this to be successful statistical theories should be
able to describe the statistical imprint of coherence and
generic mechanisms of the dynamics of coherent struc-
tures should be characterized statistically. In this arti-
cle we will focus on the first part and we will illustrate
that the origin of coherence, the suppression of nonlin-
earity, can be captured by statistical theory. We will not
address questions on the importance of coherent struc-
tures, since to answer this, one needs to be able to define
a coherent structure and this remains a highly debated
issue. A brief historical survey of analytical closure the-
ories, which are the most successful statistical theories
available, is given first.

1 Introduction: two-point clo-
sures, a short historical review

The statistics of a turbulent flow can be studied in dif-
ferent ways. In this work we will discuss the statistics
of turbulence as obtained as a result from analytical clo-
sure theory, the founding activity of the Special Interest
Group 35 of Ercoftac. We do not try to give an exhaus-
tive presentation of the enormous amount of results in lit-
erature, but rather cite some seminal references, in par-
ticular to the contributions of Robert Kraichnan. Recent
results and illustrations are taken from different works of
the authors, so that the presentation will be necessarily
biased in this respect.
Statistical theories of turbulence have to deal, one way
or another, with the closure problem since the averaged
Navier-Stokes equations contain more unknowns then
equations. This is due to the nonlinear term, which,
when averaged, introduces additional unknowns. Ana-
lytical closure approaches are an attempt to overcome
this problem by relating the unknowns by physical as-
sumptions and hereby reducing the number of unknowns
or increasing the number of equations. Early approaches,
such as the quasi-normal approach [1, 2], in which the
unclosed hierarchy of moments was closed by assuming

joint-Gaussian statistics of the fourth order moments of
Fourier-modes of the velocity field, did not yield phys-
ical results. Negative kinetic energy distributions were
observed as a consequence of that closure assumption.
A great step forward was the introduction of the Di-
rect Interaction Approximation (DIA) [3], in which the
importance of the time-history in the dynamics was rec-
ognized by introducing an evolution equation for the re-
sponse function of a Fourier mode. This quantity char-
acterizes in some sense the time correlation of turbulent
fluctuations. DIA thereby not only models the multiscale
structure of turbulence but also the non-Markovian (or
multi-time) character. An important property of DIA is
its realizability. This means that the energy spectrum
is non-negative, which was not the case for the Quasi-
Normal approximation. This property can be proven
because the DIA equations correspond to the dynam-
ics of a generalized Langevin equation for the velocity
(e.g. reference [4]), which implies that the energy and
all other even moments of the velocity field are positive.
The resulting energy distribution predicted by DIA is
proportional to k−3/2 with k the wavenumber. This is in
disagreement with Kolmogorov’s phenomenological the-
ory proposed in 1941 [5]. We recall here that in Kol-
mogorov’s theory scale-locality is assumed, which means
that at very high Reynolds numbers, in which the forcing
scale is much larger then the dissipative scale, the inter-
mediate scales are only determined by the local energy
flux and the wavenumber. Later, it was argued that this
disagreement could be caused by an incorrect represen-
tation of the time-history of the Fourier modes in the
DIA [6]. Since DIA is a two-time theory, it takes into
account the time-history of the correlations of Fourier
modes. In the original formulation of DIA, this time-
history is computed at a fixed point in the laboratory
frame. The decorrelation of a Fourier mode can then
be caused by either nonlinear distortion (such as vor-
tex stretching, straining or other multi-scale processes),
or by the advection of an arbitrary large scale or flow
component or a uniform advecting velocity. This latter
dependence is spurious in the sense that the dynamics
of a velocity fluctuation governed by the Navier-Stokes
equations should be invariant if we add an arbitrary
large scale uniform mean flow, a concept better known as
Galilean Invariance. This problem of DIA can be solved
by recasting the approximation into a Lagrangian refer-
ence frame [7]. By doing so the dynamics of a Fourier
mode at a certain scale become insensitive to the sweep-
ing of an arbitrary large flow scale. This shows that
the scale-locality assumption of Kolmogorov can be di-
rectly linked to the Lagrangian character of the time-
correlation of the Fourier modes.
The biggest problem of the Lagrangian DIA is perhaps
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its analytical complexity, in particular due to the de-
pendence of the time-history of Fourier modes over La-
grangian trajectories. In order to deal with this, ap-
proximations have been proposed which model this time
history. The assumption that the time-correlation is of
exponential form leads to a simplified set of equations
in which the time-scale appearing in the exponential is
to be modeled. This time-scale should take into account
the Galilean invariant character of the time-history. The
decorrelation should then only be caused by the decorre-
lation through the effects of pressure and viscous stresses
and not through the effect of advection, since it is this ad-
vection which is responsible for the violation of Galilean
Invariance. The decorrelation by viscous stresses is eas-
ily modeled since it is a local, linear process (in scale
space), but the decorrelation by the pressure, involving
scale-interactions is more delicate. Kraichnan proposed
an elegant way of modeling the pressure decorrelation
by pointing out that the effect of pressure is to remove
the energy which is contained in Fourier-modes parallel
to the wavevector. By solving an equation for a vector-
field, the test-field, which is governed by pressureless dy-
namics, the time-scale at which energy is transferred to-
wards the parallel modes is taken as the decorrelation
time of the Fourier modes [8]. Another way to measure
the decorrelation is to write an equation for the displace-
ment vector of a fluid particle. Since the displacement
vector is the time integral of the Lagrangian velocity,
it measures the correlation-time of a fluid particle. The
resulting model is described in [9] and in Figure (1) we il-
lustrate the comparison of results obtained by this model
with Kolmogorov’s 1941 inertial range prediction.
A further simplification of this approach leads to the
Eddy-Damped Quasi-Normal Markovian approximation
[10], in which no equation is solved for the time-scale but
in which it is modeled directly. Since this last approach
gives reasonable results in most cases, it is, by far, the
most generally used two-point closure in turbulence re-
search and most of the results presented in the following
are obtained using this closure.
We will not discuss the further attempts by Kraich-
nan to model turbulence, which in particular aimed at
correctly predicting dissipation-rate fluctuations, but we
will discuss some results which can be obtained by DIA
and EDQNM type closures. In this review the focus
will be on isotropic turbulence. An extensive review
of two-point closures applied to study anisotropic tur-
bulence can be found in reference [11]. A large body
of work has already been devoted to two-point closures
for isotropic turbulence. The present contribution can
not treat in detail every aspect and we refer to some
existing monographs for the interested reader. Refer-
ences [12–14] give a fair overview of closure-theory ap-
proaches developed until the nineties. The first of these
books is mainly devoted to DIA, the second book uses
extensively the EDQNM closure to study turbulence dy-
namics. In the last book, among others, the Local En-
ergy Transfer (LET) theory is discussed, a theory which
reconciles Kolmogorov’s 1941 concepts and Eulerian tur-
bulence theories.

0

0.5

1

1.5

2

10-4 10-3 10-2 10-1 100

E(
K

)ε
-2

/3
K

5/
3

Kη

K-5/3
CK=1.73

Figure 1: Single-time two-point closures derived from the
Direct Interaction Approximation by using an assump-
tion on the time-dependence of the response function
(a procedure also called Markovianization) yield gener-
ally agreement with Kolmogorov’s scaling arguments if
the Lagrangian character of the time-history is properly
taken into account. Shown in the figure are the com-
pensated energy spectra obtained using the Lagrangian
Markovianized Field Approximation [9].

2 Gaussianity, statistical me-
chanics and relaxation to ther-
mal equilibium

A Gaussian field does not contain structures. It rep-
resents a state of maximum disorder. If one therefore
wants to measure the coherence of a field, which is the
aim of the present review, a logical thing is to compare
with a Gaussian field. We will first digress a little from
the actual problem of turbulence and discuss some fea-
tures of a Gaussian field and then we will discuss how
turbulence develops from a Gaussian initial state.
We consider the Fourier transform of a three-dimensional
field, which in the following will represent the velocity
field or the scalar fluctuation field. Instead of the co-
ordinate bx, we now have the wavevector bk that indi-
cates the position of a vector or scalar. The Fourier-
transformed quantities are complex. Each component of
the vector is therefore determined by its norm and its
phase. The important property of a Gaussian field is
that this phase is a random variable. This translates the
fact that there are no structures. The norm is however
a free variable and one can have random Gaussian fields
with different variance distributions with respect to the
lengthscale. In the case of white noise the variance aver-
aged over a spherical shell is constant. This means that
on average the mean-quare variance of a Fourier mode is
independent of its wavenumber. Modes in thermal equi-
librium will have such an energy distribution. One can
ask what the relevance is of this type of distribution for
turbulence, in which the energy is generally dominant in
the large scales so that the distribution is far from ther-
mal equilibrium. It can however be shown that the Euler
equations will relax to a state displaying such a behav-
ior if a Galerkin trunctation is applied to the system. A
Galerkin truncation means that we consider a fixed range
of wavemodes, limited by a cut-off wavenumber kf and
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modes with k ≤ kf do not interact with modes k > kf .
In order to study the non-Gaussianity induced by the
nonlinear term in the Navier-Stokes or Euler equations,
one can perform the following (numerical) experiment:
we start with an initial Gaussian energy distribution
confined to the large scales, i.e., the small wavenumbers
and let the system evolve according to the Euler equa-
tions in a Galerkin truncated domain. The system is not
in thermal equilibrium since the energy is not equally
distributed over the different wavelengths. However, a
Gaussian vectorfield will, on average, not transfer energy
to modes of another wavenumber shell. This can easily
be seen by the fact that the mean transfer between modes
is directly related to the skewness of the distribution, or
rather the skewness of its gradients, and this skewness
is zero in a Gaussian field. Some non-Gaussianity needs
to be developed from the initial Gaussian state to re-
lax to equilibrium, since the initial conditions are not
in statistical equilibrium. This non-Gaussianity needs
to be due to the quadratic term in the Euler-equations,
since the pressure term only ensures incompressibility
and will be zero if the nonlinear term is zero. The way
in which this system will relax to this equilibrium-state
is perhaps one of the cleanest situations to study non-
Gaussianity, since no non-Gaussian forcing or initial con-
dition is imposed so that all non-Gaussian features stem
directly from the nonlinear dynamics of the Euler equa-
tions. The end-state, which is the thermal equilibrium
state, is Gaussian again. The ensemble of Fourier-modes
will thus only transiently be non-Gaussian. This non-
Gaussian transient, in which energy is transferred from
an initial Gaussian state with non-equipartitioned energy
to a thermal equilibrium follows a two-stage procedure,
which will now be described.
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Figure 2: The development of the nonlinear cascade of
energy governed by the Euler or Navier-Stokes equations
displays a scaling which is not the same as proposed
by Kolmogorov for constant flux cascades. The steeper
slope, with a power-law exponent of order 1.89, has not
yet been described by a simple dimensional analysis [15].

In the initial stage the scales will pass their energy to
smaller and smaller scales in a completely inertial way,
meaning that no damping is experienced by the modes.
This stage should be identical for both Navier-Stokes
dynamics at very high Reynolds number and Euler-
dynamics, since the viscous term is neglibible if the ini-

tially excited modes are initially confined to a sufficiently
small wavenumber range. It was recently shown that in
this stage the energy distribution displays a power-law
behaviour with an exponent between −5/3 and −2. In
Figure (2) (from [15]) we illustrate this behavior. We
note here that in this particular simulation not the Eu-
ler equations are solved but the Navier-Stokes equations
at very high Reynolds number. As stated before, it is
expected that during the initial stage this difference will
not be important for the dynamics. Currently, no di-
mensional analysis is known to predict or explain the
value of the power-law exponent, like the one proposed
by Kolmogorov for the inertial range energy spectrum
of a high-Reynolds number turbulent flow. Its value is
numerically close to the fraction −17/9 ≈ −1.89, but it
is for the moment not even clear if a dimensional anal-
ysis predicting this exponent and corresponding to the
physical mechanism should exist.
In the second stage of the evolution, the smallest scales
of the system have received energy and the energy piles
up at these modes, filling up a reservoir of thermal-
ized modes, displaying a k2 spectrum. At this point the
modes transferring energy will experience a damping. In-
deed, the thermalized modes will act, through nonlocal
interaction, as an effective viscosity on the active modes
and the latter will behave as in a constant flux energy
cascade, obeying approximately the Kolmogorov 1941 in-
ertial range phenomenology. This transient behavior is
illustrated in Figure (3) (from [16]). We note that this
behavior was predicted by Kraichnan in 1975 [17].
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Figure 3: When the truncated Euler equations are solved
starting from an initial condition in which the energy is
confined to the large scales, the dynamics will tend to
relax the system to a state in thermal equilibrium. In
this final state the energy spectrum is proportional to
k2. During the transient a Kolmogorov inertial range
can coexist with modes in thermal equilibrium at the
smallest wave-lengths. These thermalized modes act as
an effective viscosity on the modes out of equilibrium
[16].

The final state will be statistically static, displaying an
energy spectrum proportional to k2. The transient non-
linear and non-Gaussian phase shares the essential fea-
ture of nonlinear mode-coupling with real Navier-Stokes
turbulence. We still did not answer the question how
non-Gaussian the transient is. To characterize non-
Gaussianity, one can compare statistics to those obtained
from a Gaussian field. We will consider two quantities,
the skewness, which is related to triple velocity correla-
tions and the mean-square nonlinearity, a quantity which
contains quadruple velocity correlations.
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3 Third-order moments and iner-
tial range energy flux

In a Gaussian field all odd moments of the field-variable
are zero. Hereby it can be shown that no net energy
transfer can take place, since this is related to the third-
order moment of the velocity field. Therefore the energy
transfer in a turbulent flow is a direct measure of the
non-Gaussianity. In the present section we will discuss
the energy transfer in more detail, in particular focus-
ing on its scale dependence in physical space and on the
difference between the energy flux and the viscous dissi-
pation rate.
The nonlinear transfer can be related to the third-order
structure function in physical space. The longitudi-
nal structure function of order n, is defined by δun =[(
bu(bx)− bu(bx+ br)

) · (br/r)]n. Both wavenumber
spectra and structure functions measure scale distribu-
tions of moments of the velocity field. An exact cor-
respondence between the two types of quantities exists.
Well known examples of the relations between second-
and third-order structure functions on the one hand and
energy and transfer spectra on the other can be found in
reference [18]. Even though the relations exist, the trans-
formations are not always bijective. For example, if an
energy distribution in wavenumber-space is steeper then
k−3, the corresponding second order structure function
will become insensitive to the exponent and will show a
scale-distribution following a power-law proportional to
r2, corresponding to a perfectly smooth velocity distri-
bution. With respect to this aspect, wavenumber spec-
tra are more sensitive tools, since they can probe the
wavenumber distribution of these steep energy distribu-
tions.
When it comes to higher order statistics, δun for n > 2,
most investigations have focused on structure functions
rather then wavenumber spectra, in particular to mea-
sure the deviations from Kolmogorov’s 1941 proposi-
tion for inertial range scaling. This issue, adressing so-
called anomalous scaling, has received a disproportion-
ate amount of attention. The original work suggesting
a possible correction to Kolmogorov’s prediction for the
energy spectrum (or structure function), was due to Kol-
mogorov himself [19] and presented at a famous confer-
ence in Marseille 50 years ago. The autocriticism of Kol-
mogorov was motivated by the observation that scale-
dependent fluctuations of the energy dissipation rate in-
troduce an additional possible parameter in the dynam-
ics of the inertial range, so that the scale dependence
of the energy spectrum cannot be determined by dimen-
sional analysis only, as was the case for the 1941 the-
ory. These scale dependent fluctuations of the dissipa-
tion rate were indeed observed. As correctly pointed
out by Kraichnan [20], however, the relevant quantity
determining the inertial range is not the energy dissipa-
tion, but the energy flux through scales. Even though
these quantities have the same mean value in a statisti-
cally stationary state, they are not neccesarily the same,
since they reflect different physical mechanisms. The
energy flux represents the nonlinear interaction between
modes, whereas the energy dissipation corresponds to the
diffusion of momentum fluctuations through the action
of viscous stresses. Note that for the same reason the
normalized dissipation rate εL/U3, a quantity which in
numerous engineering turbulence models is taken to be
constant, is a function of the type of flow considered (see
the discussion in the caption of Figure (4)).
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Figure 4: The normalized dissipation rate is defined as
Cε = εL/U3 in which ε is the viscous dissipation rate
and L and U correspond to the integral length and ve-
locity scales, respectively. U3/L corresponds roughly
to the rate at which the large scales lose their energy
through nonlinear interaction. This energy will cascade
to the small scales and will there be dissipated. In a
steady state the energy flux and dissipation are statisti-
cally identical at high enough Reynolds number (at low
Reynolds numbers the energy-flux is smaller since the
large scales are directly dissipated by viscous dissipa-
tion). In unsteady turbulence, the cascade-time, or time
it takes for the energy to reach the smallest scales, in-
troduces an imbalance which is characterized by a vari-
ation of Cε. In the figure this is illustrated by compar-
ing stationary, forced turbulence (indicated by F) with
a canonical case of unsteady turbulence: freely decaying
turbulence (indicated by D). The curves correspond to a
simplified model prediction of the Reynolds number be-
haviour based on this idea of a cascade time. From [21].

From first principles, i.e., starting from the Navier-
Stokes equations, it has not been possible yet to prove
or disprove the existence of anomalous scaling. In favour
of the partisans of anomalous scaling we can mention
that it is possible to show deviations from normal, di-
mensional scaling, for structure functions of a passive
scalar advected by a model velocity field [22]. Similarly,
anomalous scaling can be shown to exist for the Burgers’
equation. Both examples differ from the Navier-Stokes
equation by the absence of a pressure term. Experi-
ments seem to indicate anomalous scaling. However, it is
not evident to disentangle anomalous effects from effects
which reduce the extent of the inertial range, such as the
finiteness of the Reynolds number and the energy input
in the large scales by some forcing mechanism. This is-
sue is adressed in [18], in which it is shown that that
for Reynolds numbers currently available in simulations
and experiments the deviations from Kolmogorov scaling
as described by formalisms describing anomalous scaling
are of the same order of magnitude as finite Reynolds
number effects for second order structure functions (see
Figure (5)).

4 Fourth-order correlations and
depletion of nonlinearity

In one of the original papers introducing DIA [3], it was
already mentioned that the theory was applicable to de-
scribe statistical moments of arbitrary order. It was
however not until thirty years later that it was shown
by Kraichnan and coworkers [23] how this could be done
in practice. In that investigation it was outlined how
arbitrary order cumulants (the non-Gaussian contribu-
tions) can be computed by DIA. It was shown that DIA
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Figure 5: In the framework of Kolmogorov’s 1941 theory,
the skewness of the velocity increments should display a
scale-independent plateau at very high Reynolds num-
bers. In his 1962 theory this was not any longer the
case and a power-law was predicted with a small power-
law coefficient. Formalisms such as multifractality were
applied to hydrodynamic turbulence to describe these
effects, which are absent in two-point closure theories.
However, at least at the level of the velocity increment
skewness, this power-law coefficient is of the same or-
der of magnitude as finite Reynolds number corrections
for Reynolds numbers upto roughly 104. This is a very
high value which has not yet been obtained in controlled
experiments. In the figure results of an EDQNM simula-
tion, the multifractal formalism and a wind-tunnel exper-
iment for the velocity increment skewness are compared
at a Taylor-scale Reynolds number of 2500. From [18].

did not yield only successful results. In particular, non-
Gaussian fluctuations of the dissipation rate were not
captured by DIA. An important quantity that is cor-
rectly predicted is the spectrum of the nonlinear term.
Closure can therefore be used to study the important
phenomenon "depletion of nonlinearity”, introduced by
Kraichnan and Panda in 1988 [24]. In particular it was
argued that a system containing a quadratic nonlinearity
tends to a state in which the strength of the nonlinearity
is reduced. One particular manifestation of this tendency
is the appearance of vortex filaments in the small scales
of three-dimensional turbulence.
An impressive manifestation of depletion of nonlinearity
is observed in two-dimensional turbulence. If we con-
sider the rather academic case of freely evolving two-
dimensional turbulence in a periodic domain, the end
state, long before all energy is dissipated, consists in a
longliving counter-rotating vortex pair. This final state,
in which nonlinear interaction is absent can be pre-
dicted by statistical mechanics, as was first suggested
by Onsager [25]. In axisymmetric three-dimensional tur-
bulence progress has recently be made to apply sta-
tistical mechanics in a predictive way [26]. For non-
axisymmetric three-dimensional turbulence no fully suc-
cessful attempts can be reported. However, the fact that
an important depletion of nonlinearity is observed in
both two- and three-dimensional turbulence, gives some
hope that some features can be predicted in three dimen-
sions by similar approaches. This constitutes an exciting
challenge for turbulence theory.
In a recent investigation [27] we tested the concept of
depletion of nonlinearity for the case of a passive scalar
advected by turbulence. The scalar equation is linear,
but the advection term plays for the scalar a similar role

as the nonlinearity of the Navier-Stokes equations with
respect of the coupling of different modes. Indeed all
products of fields correspond to convolution products in
Fourier space, which couple all different length scales. It
was found that also the dynamics of the scalar tend to
a state depleted of advection. In particular in the small
scales of the scalar it was observed that the strength of
the advection term was reduced substantially compared
to its Gaussian estimate (see Figure Figure (6)). The
consequence in the case of the scalar might be the ap-
pearance of fronts, since fronts are stabilized when the
scalar gradient is perpendicular to the velocity field, as
is the case when the advection term is reduced.
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Figure 6: Comparison of the spectrum of the mean
square advection term of the scalar equation in isotropic
turbulence to its Gaussian value at a Taylor-scale
Reynolds number of 1000 and Sc = 0.01, 0.1, 1. These
results show clearly that the depletion of advection is a
persistent phenomenon in the small scales of the scalar
field. Inset: scalar variance spectra. From reference [27].

In both the case of the turbulent velocity field and the
mixing of a passive scalar, the statistical imprint of co-
herence can thus be probed by computing the depletion
of nonlinearity. The manifestation of this phenomenon
in instantaneous velocity or scalar fields corresponds to
coherent structures or fronts.

5 Two-point closures and struc-
tures

It might seem surprising that, if the depression of advec-
tion is linked to the marked fronts observed in the fine
scales, it could be captured by statistical closures. A sim-
ilar thing can be said about the depletion of nonlinearity
and its relation to coherent structures. Indeed it is often
mistakenly assumed that these statistical approaches can
not predict anything on structure related issues since all
phase-information is averaged out. However, structures
are a dynamical consequence of the underlying equations
and the statistical theories are derived from these equa-
tions. It is therefore not completely surprising that, if
the assumptions used in deriving the closures are phys-
ically sound, the statistics observed from closures can
be related to the structures observed in experiments and
simulations.
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1 Introduction

The paradigm of buoyancy-driven flows is the Rayleigh–
Bénard problem: a layer of fluid bounded from above and
below by solid plates is heated from below and cooled
from above. It is a particularly appealing system to in-
vestigate experimentally as well as numerically: its im-
plementation is rather straightforward yet it provides
rich flow dynamics [1, 2]. Here we consider a relevant
extension to the classical Rayleigh–Bénard setting: a ro-
tation is added with its axis directed vertically, perpen-
dicular to the plates and antiparallel to gravity. The ef-
fects of rotation in convective turbulence are recognised
in large-scale geophysical and astrophysical flows such as
oceanic deep convection [3] and convection in the outer
layers of the Sun [4]. They may also arise in specific
technological applications, for example in turbomachin-
ery [5] or in crystal growth processes using a rotating
heated deposition target [6].
The flow in such a convective system is governed by three
dimensionless parameters, viz. the Rayleigh number Ra,
the Prandtl number σ and the Rossby number Ro:

Ra =
gαΔTH3

νκ
, (1)

σ =
ν

κ
, (2)

Ro =
1
2Ω

√
gαΔT

H
, (3)

where g denotes the gravitational acceleration, α, ν and κ
are the thermal expansion coefficient, kinematic viscosity
and thermal diffusivity of the fluid, respectively, ΔT is
the applied temperature difference between bottom and
top plate, H is the plate separation, and Ω is the an-
gular velocity of rotation. The Rayleigh number Ra
is a dimensionless form of the forcing strength. The
Prandtl number σ designates the diffusive properties of
the fluid. The Rossby number Ro compares the buoy-
ant time scale τb =

√
gαΔT/H to the time scale of

rotation τΩ = 1/(2Ω); it essentially gives the relative
importance of buoyancy and rotation, i.e. strong ro-
tation implies Ro � 1. In practical applications an-
other parameter occurs that describes the geometry. An
upright cylinder is the preferred geometry, which pro-
vides as extra parameter the diameter-to-height aspect
ratio Γ = D/H. Here we shall mostly consider cylindri-
cal geometries with Γ = 1.
The primary questions in this research are the effects
of rotation on the flow phenomenology, the turbulence
statistics and the convective heat transfer. The last

Figure 1: The convection experiment.

quantity is indicated by the Nusselt number Nu, which
compares the convective heat flux to the flux due to con-
duction that would be found in absence of fluid motion.
We have used experiments and numerical simulations to
investigate this flow problem.
This paper is organised as follows. In section 2 the ex-
perimental and numerical methods employed in this work
are presented. The flow phenomenology that is found at
various rotation rates is treated in section 3. Section 4 is
on the convective heat transfer under influence of rota-
tion. In section 5 we consider the rotational dependence
of turbulence intensities (root-mean-square velocity and
vorticity). A description of anisotropy is presented in
section 6. Conclusions are drawn in section 7.

2 Experimental and numerical
methods

The experimental setup is shown in Figure (1) [7]. The
working fluid (water) seeded with PIV tracer particles
is placed inside a Plexiglas cylinder of equal height and
diameter H = D = 23 cm, which is closed from below
by a copper plate with an electric heater underneath,
keeping the bottom plate at a constant temperature. A
transparent cooling chamber is mounted on top; a cool-
ing bath circulates water through the cooling chamber to
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maintain a constant temperature there. The cell is trans-
parent from above. A square container is placed around
the cylinder with the volume in between also filled with
water; thereby allowing for optical access from the sides.
A laser light sheet traverses the flow domain horizon-
tally. Two cameras mounted above the cell (not visible
in the photograph), placed at different viewpoints, are
used to record the seeding particle images, which can be
processed with a stereoscopic PIV algorithm [8] to si-
multaneously extract the three components of velocity
in many positions in the laser light sheet plane. All of
the aforementioned equipment is mounted on a rotating
table.
It must be noted that experimental investigations on
convection cannot reliably combine precise heat transfer
measurements with investigation of the flow inside the
convection cell. Flow measurements require a cell that
is optically accessible, while for the determination of the
heat transfer it is important to thermally insulate the
entire cell to avoid stray heat currents, see e.g. Ref. [9].
Next to the experiment we have carried out direct numer-
ical simulations (DNS) of turbulent rotating convection
in a cylindrical domain. The nondimensionalised equa-
tions of motion to be solved are

∂u
∂t

+ (u · ∇)u +
1
Ro

ẑ× u =

−∇p+ T ẑ +
√

σ

Ra
∇2u , (4)

∂T

∂t
+ (u · ∇)T =

1√
σRa

∇2T , (5)

∇ · u = 0 , (6)

which describe the evolution in time t of the velocity u
and temperature T ; ẑ is the vertical unit vector pointing
upwards. The reduced pressure p = P − 1

2Ω
2r2 incorpo-

rates the centrifugal acceleration Ω2r in potential form.
To shed the equations in this dimensionless form, dis-
tances are scaled with the domain height H, time with
the buoyant time scale τb; temperatures are scaled ac-
cording to T = (T ∗ − T0)/ΔT , with T ∗ the actual tem-
perature and T0 the temperature of the top plate. In
the equations of motion the Boussinesq approximation
is applied: variations of density with temperature are
only considered in the gravitational term and linearised
with constant of proportionality α. Furthermore, the
fluid properties α, ν and κ are assumed constant (inde-
pendent of temperature). The horizontal plates are kept
at constant temperatures, while the sidewall is adiabatic.
The discretisation used second-order finite-difference for-
mulations in space and a third-order Runge–Kutta time
integration scheme is applied. The formulation in cylin-
drical coordinates requires some special attention to
avoid the singularity on the axis r = 0 due to terms 1/r
occurring in the Navier–Stokes [10,11].

3 Flow phenomenology

Rotation has a profound effect on the formation of co-
herent structures in the convective turbulent flow. We
know from turbulent convection without rotation that
the individual plumes cluster together to form a domain-
filling large-scale circulation (LSC) [1], i.e. warm fluid
rises on one side of the cylinder while cold fluid sinks
on the opposite side. This can be nicely visualised in
DNS (upper left plot of Figure (2)): three-dimensional

Figure 2: Flow structures in DNS at Ra = 1 × 109
and σ = 6.4 (water). Top left: positive (red) and
negative (blue) vertical-velocity isosurfaces in the non-
rotating case. The other plots show isosurfaces of the Q
criterion marking rotation-dominated regions (vortices),
top right Ro = 0.72, bottom left Ro = 0.18, bottom
right Ro = 0.045.

isosurfaces of positive (red) and negative (blue) verti-
cal velocity visualise the LSC. Weak rotation does not
affect the LSC that much, although it shows a retro-
grade precession caused by the Coriolis force acting on its
horizontal branches [12]. However, at a critical Rossby
number Roc = 2.5 (dependent on the cylinder aspect
ratio Γ) a transition occurs [12–14]: the LSC disappears
and instead smaller vertically aligned vortical plumes are
formed. These vortices can be visualised with contours
of the so-called Q criterion [15] that distinguishes strain-
dominated regions from rotation-dominated structures,
i.e. vortices. The tendency to form coherent vortices
as the Rossby number decreases (rotation increases) can
be clearly recognised from the three other plates in Fig-
ure (2). Additionally, the columnar flow structuring typ-
ical for rapidly rotating flows is also observed: a man-
ifestation of the Taylor–Proudman theorem [16] which
describes the suppression of vertical velocity gradients
by rotation.
These columnar vortices have a peculiar internal struc-
ture. There exist ‘warm’ and ‘cold’ vortices, depend-
ing on from which plate they originate (bottom or top).
Close to its plate of origin such a vortex gains strong
positive vorticity due to spin-up (conservation of angu-
lar momentum) of the converging flow in the boundary
layer feeding it. While traversing the domain vertically,
it gradually loses its vorticity. As it approaches the ver-
tically opposite plate it spins down, gains negative vor-
ticity and the feeding flow is deviated radially outward.
They obey to first approximation an up-down symme-
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Figure 3: Mean number of cyclonic (N+) and anticy-
clonic (N−) vortices found in a horizontal cross-section of
the domain as a function of rotation (Taylor number Ta),
at Ra = 6 × 108 and σ = 6.4. From left to right, the
points correspond to Rossby numbers Ro = 0.56, 0.28,
0.14, 0.07 and 0.035. Various vertical measurement po-
sitions are included. The solid line is the prediction of a
theoretical model by Sakai [19].

try that, when enforced in the Navier–Stokes equations,
provide a fitting theoretical model for these vortices [17].
This also means that in a given horizontal cross-section of
the domain, one can find both cyclonic (rotating in the
same direction as the convection cell) and anticyclonic
(of opposite rotation) vortices.
Another observation from the visualisations of Figure (2)
is that the number of vortices depends on the rota-
tion rate. We have used the vortex detection crite-
rion Q to count the number of vortices as a function
of rotation rate [18]. To compensate for the height
of the boundary layer that changes with rotation, we
investigated horizontal cross-sections at vertical posi-
tions that are multiples of the Ekman boundary layer
height δE =

√
ν/Ω [16]. The theoretical Ekman layer

thickness is found to be a good approximation for the
boundary layer thickness in the rotating turbulent con-
vective flow [7]. In Figure (3) the mean number of vor-
tices found in a horizontal cross-section of the cylinder
are depicted at several measurement heights z = δE
(black), 2δE (red), 3δE (blue) and 5δE (green). Cyclonic
(N+) and anticyclonic (N−) vortices are counted sepa-
rately. They are depicted as a function of the Taylor
number Ta = Ra/(σRo2) ∼ Ω2, another dimensionless
representation of the rotation rate. It is seen that cy-
clonic vortices are formed in a boundary layer of ap-
proximate thickness 2δE . In this layer no anticyclonic
vortices are detected. The strong cyclonic vortices re-
main stable when going to other vertical positions (their
number remains constant). For z ≥ 2δE some anticy-
clonic vortices are detected, however there are consider-
ably less anticyclonic vortices than their cyclonic coun-
terparts (N+ > N−). The total number of vortices in-
creases as Ta grows, so there are indeed more vortices at
higher rotation rates.
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Figure 4: The Nusselt number Nu as a function of
Rossby number Ro. To emphasize effects of rotation
the results are normalised with the Nu value found in
absence of rotation (Ro = ∞). The blue vertical line
indicates the critical Rossby number Roc = 2.5.

4 Heat transfer

The convective heat transfer through a convection cell
depends on the rotation rate in an unexpected way. In
Figure (4) we show the results of a series of DNS at sev-
eral Rossby numbers and Ra = 1 × 109, σ = 6.4 [12].
The Nusselt number Nu(Ro) is normalised by the value
found in absence of rotation Nu(Ro = ∞). At small
rotation rates (high Ro) rotation has no effect on the
heat transfer. However, at the critical Rossby num-
ber Roc = 2.5 introduced before, there is a ‘kink’ in the
graph. As the Rossby number decreases past Roc the
heat transfer increases, with a maximal increase of 15%
around Ro ≈ 0.1. For Ro < 0.1 the heat transfer is
reduced by rotation. The increased heat transfer was
first noticed in a pioneering experiment by Rossby [20]
in which he also explained its origin: the vortices that
are formed in the flow act as pumps that entrain fluid
from close to the plates (which is either very hot or
very cold) and transport it efficiently to the vertically
opposite side. This pumping action is known as Ek-
man pumping [16]. Zhong et al. [21] and Stevens et
al. [22] have recently shown that the heat transfer en-
hancement is strongly dependent on the Prandtl num-
ber and that it is most effective at moderate Rayleigh
numbers of O(107− 109). In fact, in rotating-convection
experiments in liquid helium at very high Rayleigh num-
bers Ra = 1011−4×1015 only a reduction of heat transfer
by rotation is observed [23]. The reduction of heat trans-
fer by strong rotation (low Rossby numbers) is a man-
ifestation of the stabilising effect of rotation: vertical
velocity fluctuations are damped, reducing the convec-
tive heat transport. Indeed, linear stability analysis [24]
reveals that at sufficiently large rotation all convective
motions will be suppressed and an exclusively conduc-
tive state remains with Nu = 1. This damping of fluc-
tuations will be further quantified in the next section.
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Figure 5: Horizontal and vertical rms velocities measured
at two heights: (a) z = 0.5H (mid-height), with hor-
izontal (circles) and vertical (squares) components; (b)
z = 0.8H (closer to the top plate), with horizontal (trian-
gles) and vertical (diamonds) components. In both pan-
els the experimental results are plotted in black and the
DNS results in red. The black symbols on the right-hand
side boundary represent the non-rotating case Ro = ∞.
The blue line indicates an approximate Rossby number
scaling.

5 Turbulence statistics

The fact that the critical Rayleigh number for onset
of convective motion goes up as rotation is added [24]
is generally interpreted as a sign that rotation stabi-
lizes the turbulence; i.e. rotation weakens the turbu-
lent fluctuations. This is found to be only partially true,
when considering the Rossby number dependence of the
root-mean-square (rms) velocity fluctuations [7], see Fig-
ure (5). The values are rendered dimensionless with the
viscous velocity scale ν/H. Results from experiment
and DNS are compared; a good qualitative agreement
is observed. The quantitative difference is due to differ-
ent Rayleigh numbers, Ra = 6 × 108 in the experiment
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Figure 6: Root-mean-square vertical vorticity from ex-
periment (black) and DNS (red). Circles denote z =
0.5H; triangles are for z = 0.8H. The black symbols
on the right-hand side boundary are from an experiment
without rotation (Ro =∞).

and Ra = 1 × 109 in the DNS [7]. For Rossby numbers
smaller than Roc it is indeed observed that a reduction
of Ro (increased rotation) leads to reduced fluctuations.
However, around Roc the rms velocities are higher than
without rotation. The reason for this is not clear, al-
though we expect that it is linked to the azimuthal drift
of the LSC [12]. At the cell mid-height z = 0.5H the
vertical rms velocities are always higher than their hori-
zontal counterparts, with a remarkably constant spacing
between them. Closer to the top plate at z = 0.8H
the horizontal rms velocities can actually become larger
than the vertical fluctuations. This is related with spin-
up and spin-down of the vortical tubes, occurring close
to the plates, that generate horizontal velocity. A final
remark can be made concerning the lowest Rossby num-
bers considered in this plot: the steeper curves indicate
a state with a more pronounced rotation dependence.
We also considered the rms values of the vertical vortic-
ity component, as this component is linked to the ver-
tically aligned vortical tubes. These vortices should be
represented in the vorticity statistics. These values are
presented in Figure (6), nondimensionalised with the vis-
cous time scale H2/ν. The quantitative difference be-
tween experiment and DNS due to different Ra remains,
but again a nice qualitative agreement is found. The
rms vorticity under rotation is consistently larger than
in the non-rotating case. The spin-up process that pro-
duces strong vorticity is found to start somewhere be-
tween Ro = 3 and 6. For the most part the rms vorticity
is of equal magnitude on both considered measurement
heights. However, around Ro = 0.1 the vorticity closer
to the plate shows a distinct peak while at mid-height
it is reduced in strength. For Ro < 0.1 the increased
sensitivity can also be noted in this graph.
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6 Anisotropy

The anisotropy identified in the rms velocity plots can
be quantified in the so-called Lumley triangle [25,26]. It
builds on the tensor invariants of the deviatoric part bij
of the Reynolds stress tensor Rij :

bij =
Rij
Rkk

− 1
3
δij , (7)

where Rij = ¯uiuj and δij is the second order Kronecker
tensor; summation is implied over repeated indices. bij is
a symmetric tensor with zero trace by definition. Hence
the first tensor invariant, which is the trace, is always
zero. The second and third invariants are defined as II =
−bijbji/2 and III = bijbjkbki/3 = det(bij).
A plot of all physically realizable turbulence states in
terms of the invariants II and III reveals a triangular re-
gion, the Lumley triangle, see Figure (7), which is based
on figure 1 of Ref. [27]. The limit of three-component
(3C) isotropic turbulence is the bottom point of the dia-
gram. From this point, the leftward boundary represents
axisymmetric turbulence in which the anisotropy tensor
has one small eigenvalue (EV) and two larger EVs of
equal magnitude. This corresponds to a turbulent state
in which one direction has a reduced turbulence inten-
sity; it is also referred to as pancake-shaped or disk-
like turbulence. From the bottom point to the right
the anisotropy tensor has one large EV and two equal
smaller EVs. One direction has stronger than the other
two; this turbulence is described as cigar-shaped or rod-
like. These descriptions, while often strikingly good in
practice, must be used with caution as it actually states
the shape of the anisotropy tensor, not of the resulting
flow structures [26,27]. The leftmost point in the triangle
represents the state of two-component (2C) axisymmet-
ric turbulence (the two nonzero components are of equal
magnitude). The rightmost point is the theoretical limit
of turbulence with one nonzero component (1C). On the
connecting line between the 1C and 2C axisymmetric
points the 2C states with a preferred direction (and one
component zero) are found.
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Figure 8: Time traces of the invariants calculated from
the experiments, plotted in the Lumley triangle at differ-
ent Ro: (a,b) Ro =∞; (c,d) Ro = 1.44; (e,f) Ro = 0.09.
Plates (a,c,e) are measured at vertical position z = 0.5H,
plates (b,d,f) at z = 0.8H. The grey lines indicate the
bounding curves of the Lumley triangle.

We considered the anisotropy of turbulent rotating con-
vection according to this procedure [7,28]. The invariants
have been calculated from velocity snapshots of the flow.
Time traces of the invariants are plotted in Figure (8) at
three different Rossby numbers, viz. Ro =∞, Ro = 1.44
and Ro = 0.09. It can be seen that the effect of rotation
on the anisotropy is different at the two vertical positions
under consideration. At mid-height z = 0.5H the trajec-
tory in the Lumley triangle is found in a thin region near
the right-hand-side bounding curve: turbulence with one
preferred direction. Indeed, in the velocity rms plot (Fig-
ure (5)a) it can be seen that vertical fluctuations are
stronger than the horizontal ones. At z = 0.5H the ver-
tical velocity inside the vortical columns is stronger than
the horizontal components. However, at z = 0.8H it is
found that under rotation the trajectory is confined to
a reduced area close to the 3C isotropic point. Thus we
can conclude that rotation leads to a more isotropic state
at this measurement height: the spin-up and spin-down
of vortex tubes apparently induces horizontal velocities
that are comparable in magnitude to the vertical veloc-
ities. A similar analysis of the DNS results revealed the
same picture [7].
This result marks a sharp contrast with isothermal rotat-
ing turbulence [29], where fluctuations of the two velocity
components perpendicular to the rotation axis are domi-
nant over the smaller component parallel to the rotation
vector.
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7 Conclusion

Turbulent rotating convection in a cylindrical domain
has been investigated using experiments employing
stereoscopic PIV and DNS. We have presented an
overview of the effects of rotation on the formation of co-
herent structures, the convective heat transfer and sev-
eral statistical properties of the turbulence. Based on
these analyses it is appropriate to suggest a division into
three regimes based on the Rossby number Ro:

Ro > Roc: These modest rotation rates have practically
no effect on the convective motion. The large-scale
circulation is the dominant flow structure. All of
the statistics remain at the values found in the non-
rotating case.

0.1 � Ro < Roc: The formation of coherent column-like
vortices increases the velocity and vorticity fluctu-
ations. Ekman pumping inside these vortices en-
hances the convective heat transfer. This effect is
stronger than the damping of velocity fluctuations
by rotation: even though the rms velocities decrease
as rotation is enhanced (Ro is lowered), the heat
transfer (Nusselt number) actually increases at the
same time.

Ro � 0.1: The damping action of rotation is dominant
in this regime. Velocity fluctuations are strongly re-
duced, as is the convective heat transfer. A strong
enough rotation can suppress all convective mo-
tion [24].

This work is part of a group of investigations on the
effects of rotation on turbulence carried out in our lab-
oratory. Other works (partially) carried out by people
from our group include experimental [29,30] and numer-
ical [31] studies on isothermal rotating turbulence.
R.P.J.K. wishes to thank the Foundation for Fundamen-
tal Research on Matter (Stichting voor Fundamenteel
Onderzoek der Materie, FOM) for financial support.
This work was sponsored by the National Computing Fa-
cilities Foundation (NCF) for the use of supercomputer
facilities, with financial support from the Netherlands
Organisation for Scientific Research (NWO).
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1 Introduction

Homogeneous Anisotropic Turbulence (HAT) is often
considered as a marginal theme among ‘canonical’ turbu-
lence studies. Isotropy is often automatically associated
with homogeneity, and the search for more or less uni-
versal behaviour of inertial scales, considered as homoge-
neous, isotropic, and intermittent, remains an important
activity, even when analysing flows that are nonetheless
anisotropic and even inhomogeneous at largest scales.
On the other hand, HAT is of interest in the geophysi-
cal context, especially for turbulent flows dominated by
rotation and/or stable stratification. Another domain
is magnetohydrodynamics (MHD) flows, for electrically
conducting fluids, and all aspects particularly relevant in
astrophysics or geodynamo.
It can be shown that these flows are very important for
a better understanding of anisotropic cascade phenom-
ena, with a general implication in the modelling of turbu-
lence. For instance, very high resolution direct numerical
simulations (DNS) are developed to investigate ‘purely’
rotating flows with helical and non-helical forcing at the
largest scales (Mininni et al., with A. Pouquet, lots of
recent papers); such studies are relevant for turbulence
theory, although much less directly applicable to actual
flows in a dedicated geophysical context or in turboma-
chinery.
Our studies presented here are set in this context, but,
in contrast with other recent analyses, we consider that
anisotropy is the main characteristic and deserves a com-
plete investigation.
In addition to DNS, additional insight can be obtained
thanks to the renewed interest for the development of
closure methods and theories ranging from dynamical
equations of Navier-Stokes type to the related dynamical
equations for multipoint statistical correlations. As pre-
sented in the foreword, on the one hand, rather recent
analyses starting from Kármán-Howarth-like equations
for two-point second-order velocity correlations, are re-
ally two-point approaches. On the other hand, techniques
formerly referred to as two-point closures or two-point
theories, developped in Fourier space from Kraichnan’s
and Orszag’s legacy, tackle the problem of cascade at the
level of three-point third-order dynamics: it is suggested
to call these approaches triadic that rather two-point .
The interest of this spectral, triadic, approach, is dis-
cussed for strongly anisotropic turbulence, and involves
the rigorous removal of pressure fluctuations and detailed
conservation laws, following [24].

Generalized rapid distorsion theory (RDT) is only used
to give a ‘linear ground 0’, say, in order to display, by
comparison with DNS and EDQNM, which is the ex-
act contribution of nonlinearity. In addition, it is used
to identify the eigenmodes and the basic dispersion laws,
when waves are present, which serve as a base for improv-
ing the nonlinear analysis. Similarly, the linear Green’s
function—e.g. expressed by diagonalization in the basis
of eigenmodes—is incorporated in generalized EDQNM
models, thus including the rapid distortion of cubic cor-
relations. The flow cases considered here are essentially
‘without production’ so that the body force has a di-
rect impact on cubic correlations, and therefore on the
cascade process. Anisotropy deeply penetrates towards
rather small structures in the inertial range, and can
affect more these structures than the largest ones, in
the absence of artificial forcing. A similar set of three
cases, rotating, stratified, MHD, has been investigated
by other teams, but only looking at weak anisotropy
(e.g. Y. Kaneda and coworkers), or based of a priori
semi-empirical scalings for Reynolds stress components
and integral lengthscales. In particular, the approach
by Davidson (2011) [7] overestimates the purely linear
effects for the formation of structures in rotating tur-
bulence, and implicitely supports a critical balance be-
tween linear and nonlinear effects for stratified turbu-
lence, as also advocated by Lindborg and coworkers, as
rediscussed in Section 3. A questionnable amalgam be-
tween the three cases is proposed by S. V. Nazarenko and
A. A. Schekochihin, conjecturing the critical balance as
well. Based on these three cases, rotating turbulence in
section 2, stratified turbulence in Section 3 and MHD
turbulence in Section 4, we illustrate here a full theory
for axisymmetric turbulence, which does not use a priori
scaling analysis.

2 Rotating turbulence

In the linear limit, rotating homogeneous turbulence is
thus the superposition of inertial waves, structured in
wave packets according to the initial conditions. Ap-
part from a preferential short time concentration of en-
ergy propagation due to the inertial waves dispersion law,
from e.g. initial inhomogeneous blobs of turbulence, the
long term structure of rotating turbulence predicted by
RDT cannot become strongly anisotropic in a permanent
way. By contrast, DNS of homogeneous rotating tur-
bulence has shown that the initial isotropic turbulence
eventually evolves toward a flow with vortical structures

52 ERCOFTAC Bulletin 88



stretched along the rotation axis, and exhibits an asym-
metry in the axis-parallel vorticity, with preferential cy-
clonic motion. Triadic statistical anisotropic EDQNM
model simulations confirm this behaviour and underline
the fact that no complete two-dimensionalization may
occur without interference of boundary conditions, be
they of periodic or non slip types. Moreover, the asymp-
totic limit of the EDQNM model, at vanishing Rossby
number, recovers wave turbulence theory (see, e.g., the
book by Zakharov et al. 1991, ref. in [24]), although
for anisotropically dispersive waves in the case of rotat-
ing flows. The latter AQNM model, explicitly exploited
with numerical simulations, confirms one is not to expect
full two-dimensionalization of rotating homogeneous tur-
bulence at large rotation rates and large time (Bellet et
al., 2006) [1].
Non-standard results for detailed anisotropy were re-
cently confirmed by an experimental approach, as dis-
cussed in the recent SIG 35 W2011-9 workshop. First
experimental measurements of the anisotropic energy
transfers in the physical space are presented. Large data
sets of PIV (particule image velocimetry) have been ob-
tained in grid-generated turbulence in the ’Gyroflow’
rotating platform. The measured energy density and
energy flux are consistent with a variant of Kármán-
Howarth equation in which the third-order structure
function is fully axisymmetric, with S3(r, θr) [18]. It
is observed that the small scales are more anisotropic
than the large scales, as a first experimental confirma-
tion of what we have shown for more than two decades,
looking at the axisymmetric spectral transfer T (k, θk)
(see [24] and references herein from Cambon & Jacquin,
1989.) More generally, Dynamical, structural and statis-
tical aproaches are reconciled, with a first approach to
a quantitative accurate linkage of third-order structure
functions to spectral transfer terms mediated by cubic
correlations as well [13].

3 Stratified turbulence

We study shearless buoyant turbulence in the presence
of a vertical mean density gradient Γ = ∂〈ρ〉/∂x‖ (stabi-
lizing when Γ < 0, destabilizing otherwise). The vertical
(axial) direction x‖ sets the axis of symmetry for the flow
statistics, and is antiparallel to the gravitational acceler-
ation g. Within the Boussinesq approximation, the cou-
pled fluctuating fields of velocity and buoyancy are gov-
erned by the generalized Navier-Stokes equations includ-
ing the buoyancy force, and the transport equation for
the buoyancy scalar, or active scalar. In a first, simplified
approach, we consider the dynamics of statistically quasi-
homogeneous turbulence, in which the density gradient
is uniform in space. It yields a Brunt-Väisälä frequency
N = (−gΓ/ρ0)1/2 in the stabilizing case with Γ < 0, or
its buoyancy-driving counterpart N =

√
gΓ/ρ0 in the

destabilizing case with Γ > 0 (ρ0 is the reference den-
sity).
We propose to discuss the dynamics and statistics of
the turbulent flow, in relation with the different struc-
turation of the stabilizing and destabilizing cases. Our
approach is based on theoretical and numerical models
of increasing complexity, starting from quasi-analytical
predictions of statistics when considering the linearized
equations — a.k.a. the Rapid Distortion Theory (RDT)
—, a statistical spectral model based on the multimodal
axisymmetric EDQNM theory by [11], with nonlinear
transfer terms for the cascade, and pseudo-spectral Di-

rect Numerical Simulations, as a means of tackling the
full, nonlinear problem.

3.1 Relevance of a poloidal-toroidal-
potential decomposition in both sta-
ble and unstable cases

Navier Stokes equations with variable density fluctua-
tion, within the Boussinesq approximation, write

u̇− ν∇2u+ ω × u+ ∇p = bn, (1)

whereas the buoyancy “active” scalar b is governed by
the following transport equation, in the presence of a
mean density gradient of strength N2:

ḃ− κ∇2b+ u∇b = −N2u·n. (2)

Here the buoyancy scalar is the product of gravitational
acceleration g by density fluctuation ρ, but the same
equations are valid for other stratifying agents (temper-
ature, salinity). The axial vector n is antiparallel to
the gravitational acceleration vector, or g = −gn. For
the sake of simplicity, the Prandtl number will be chosen
equal to 1, with the same diffusivity for velocity and tem-
perature (ν = κ). The pressure term p can include the
kinetic energy if the nonlinearity is expressed in terms
of the Lamb vector. This needs not be specified because
∇p is determined only for ensuring the divergencefree
condition of u. One of the simplest way to do that is
to Fourier-transform the equations and to project the
velocity-equation on an orthonormal frame of reference,
the so-called Craya-Herring frame e(1), e(2), e(3) = k/k,
which is attached to the direction of the wavevector k of
modulus k. In this frame of reference, the velocity and
vorticity vectors have only two components

û = u(1)e(1)+u(2)e(2), and ω̂ = ik
(
u(1)e(2) − u(2)e(1)

)
,

(3)
so that the divergence-free condition is automatically en-
sured and pressure fluctuation is removed from consid-
eration. Choosing

e(1) =
k × n

| k × n | , (4)

(with e(2) = e(3)×e(1), e(3) = k/k,) the two-components
u(1) and u(2) inEq. (3) correspond to toroidal and
poloidal modes in physical space. In the special case
of vertical (axial) k (k aligned with n,) the Craya-
Herring frame can coincide with a fixed frame of ref-
erence, and u(1), u(2) generate the Vertically Sheared
Horizontal (VSHF) mode very important 1D mode in
the stable case. For mathematical convenience, the
Fourier transform of b is scaled as a velocity defining
u(3) = −b̂/N so that it corresponds to the density of po-
tential energy. In terms of the variables u(1), u(2), u(3),
the preceding system of equations is rewritten as

u̇(1) + νk2u(1) = −e(1)·ω̂ × u, (5)

u̇(2) + νk2u(2) +N sin θku
(3) = −e(2) · ω̂ × u, (6)

and

u̇(3) + νk2u(3) −N sin θku
(2) = −iki

N
ûib. (7)

Implicit effects of fluctuating pressure and solenoidal
property for u amount to modulate the N term by the
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angle-dependent parameter sin θk = k⊥/k. We have cho-
sen to write the fully nonlinear equations in the stable
case: In the unstable case, the sign of the factor N sin θk
must be changed in the last equation.

3.2 Inviscid RDT

This régime is found by discarding both the viscous term
and the nonlinear one, in the right-hand-side of Eq. (5),
Eq. (6), Eq. (7). Conservation of the toroidal mode
comes from the fact that it is both horizontal, thus not
affected by the explicit buoyancy term, and divergence-
free, thus not affected by the pressure gradient, in ba-
sic Eq. (1). In the stable case, poloidal and poten-
tial components oscillate with opposite phase with the
frequency Nk⊥/k, which is the dispersion frequency of
gravity waves. The simple toroidal/ poloidal decomposi-
tion, introduced as ‘vortex/ wave’ decomposition by [21],
shows that only the poloidal and potential components
must scale with a Froude number. Accordingly, in con-
trast with the results in Hanazaki and Hunt (1997), the
RDT is not recovered in the limit of low Froude num-
ber, because this limit can let the toroidal mode sur-
vive with arbitrary nonlinear dynamics (full equation
(Eq. (5)). Recall that conventional RDT is completely
revisited in [11] but also embedded in a fully nonlinear
theory. More generally, any global scaling for the equa-
tion of the velocity field in terms of Froude numbers is
questionable, depending on the relative importance of
toroidal and poloidal modes, even if they are possibly
nonlinearly coupled. This also raises the question of the
a priori scaling of ∇p in physical space (e.g. Lindborg
and coworkers), if its splitting in two different terms is
not accounted for: the linear part, correcting the explicit
buoyancy term, and the nonlinear contribution.
Looking at second order statistics, oscillations are
damped, in agreement with the phase-mixing of gravity
waves, and, for instance, toroidal and poloidal energies
tend to equilibrate towards half their initial sum.
The RDT yields dramatic evolution in the unstable case.
The toroidal mode is conserved again, but both poloidal
and potential components are affected by exponential
growth exp(Ntk⊥/k). These tendencies are recovered
in recent full DNS, with privileged amplification of the
poloidal mode, affecting the vertical velocity, and rela-
tive concentration of the poloidal energy spectrum to-
wards the mode k‖ = 0 (or maximum k⊥/k,) as for a
forced two-dimensionalization.

3.3 Stable case: Toroidal cascade in
strongly stratified flows

This application is important in the atmosphere and the
ocean, in which stable stratification limits vertical mo-
tions and renders the flow mainly horizontal. The prob-
lem of the direction of the cascade in such flows is still
controversial, even if a global consensus is now emerg-
ing against the idea of a classical 2D inverse cascade.
On the one hand, the analogy between quasi-geostrophic
and 2D dynamics, with conservation of potential vortic-
ity, was investigated by [?]. This analogy was revisited by
Bartello (1995, ref. in [24]) with a refined analysis using
the eigenmode decomposition. Regarding applications,
Lilly (1983, ref. in [24]) proposed that the kinetic energy
spectra observed in the atmosphere at mesoscales are
a manifestation of this two-dimensional mechanism. Re-
cently, Cho and Lindborg (2001) [6] deduced from analy-

sis of third-order statistical moments that the energy cas-
cade is in the direct sense. This observational evidence
was further supported by a dimensional analysis related
to the zig-zag instability by Billant and Chomaz (2001,
ref. in [24]), showing that the vertical scale is necessary
limited by a local buoyancy length scale LB = U/N ,
where U is the horizontal velocity scale. Several DNS
or LES with hyperviscosity were carried out by Lind-
borg and coworkers to investigate such a forward cas-
cade. In these computations, only the two-dimensional
and two-component modes (2D-2C) are randomly forced,
and the horizontal lengthscales are a priori chosen much
larger than the vertical ones, using vertically flattened
boxes. Even if these studies present interest for atmo-
spheric flows, their contribution to a better conceptual
understanding of turbulence is limited by both geomet-
ric constraints and artificial forcing: No refined analysis
of the anisotropy of the flow is performed, and no new
mechanism of nonlinear cascade is derived from such sim-
ulations.

Figure 1: Sketch of anisotropic structure induced by
nonlinearity: stratified (left), rotating (middle), spectral
(top a-c) and physical (bottom b-d) space, from [11]
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Figure 2: Recent anisotropic EDQNM result for toroidal
energy transfer

We propose here to reinterpret the nature of the cascade
in strongly stratified flows looking at the basic nonlin-
ear mechanism, following the analyses by [23] and [11].
Even if the zig-zag instability is an efficient mechanism
to break the vertical coherence of the flow and to il-
lustrate the horizontal layering, it is only a modality of
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Figure 3: Isoenstrophy surfaces (snapshot of DNS of
strongly stratified flows), using only the toroidal (top)
and the poloidal (bottom) contributions from the veloc-
ity field. Courtesy of L. Liechtenstein.

a much more general nonlinear mechanism. Layering
can be obtained without need of preexisting large coher-
ent 2D vortical structures, and without randomly forcing
such structures. For instance, it is shown in Figure (3)
that layering is created in DNS from isotropic, unstruc-
tured initial data: This layering essentially affects the
toroidal mode, whereas the poloidal mode remains quasi-
isotropic. In addition, the stronly anisotropic descrip-
tion with angle-dependent spectra allows us to quantify
the vertical layering in connection with a toroidal en-
ergy cascade, not only in DNS by [19]—with isotropic
initial data, no forcing and no hyperviscosity— but
also in statistical theory. For instance, the EDQNM2
model by [11] firstly suggested the cartoon in Figure (1)
(left and middle), confirmed by our recent studies, and
showed that the cascade is essentially direct in terms
of interacting spherical shells. In contrast with rotat-
ing turbulence, in which nonlinear interactions amount
to draining the spectral energy from any wavevector di-
rection towards the horizontal waveplane normal to the
system angular velocity—this plane corresponds to the
2D manifold—, an inverse specific energy drain yields
concentrating spectral energy towards vertical wavevec-
tors in the stably-stratified case. The limit of vertical
wavevectors corresponds to the Vertically Sheared Hor-
izontal Flow mode and has nothing to do with the 2D
mode; on the contrary, it characterizes horizontal layer-
ing with only vertical variability in physical space. Ac-
cordingly, this nonlinear mechanism illustrates a really
anti-2D nonlinear trend, looking at angle-to-angle in-
teractions in wave-space. Of course, this mechanism is
not inconsistent with a direct energy cascade looking at

shell-to-shell interactions. The fact that a cascade can
be seen as inverse in terms of k⊥ components, and as di-
rect in terms of k = |k|, demonstrates the importance of
a detailed description of strongly anisotropic energy and
transfer spectra (axisymmetric in our context), in terms
of both vertical and horizontal wavevector components.
Omitting viscosity, the toroidal velocity component is
governed by the following exact equation

u̇(1) + e(1) · ω̂ × u = 0. (8)

Attention is then restricted to a single triad, getting rid
of nonlinear contributions such as u(2)u(1) and u(2)u(2),
in dealing with ‘weak’ gravity wave turbulence. The sys-
tem of equations

u̇
(1)
k = (p2⊥ − q2⊥)Gu(1)∗p u(1)∗q , (9)

u̇(1)p = (q2⊥ − k2⊥)Gu(1)∗q u
(1)∗
k , (10)

u̇(1)q = (k2⊥ − p2⊥)Gu
(1)∗
k u(1)∗p , (11)

is almost the same as the one obtained by Kraichnan
or Waleffe in pure 2D-2C turbulence. It conserves both
energy and vertical enstrophy, and suggests than only
‘reverse’ (R) types of triadic interactions are involved.
The latter result derives from Waleffe’s instability princi-
ple [23], using the analogy of the former system of equa-
tions with Euler’s problem for the angular momentum
of a solid. Nevertheless, the fact that the completely
symmetric factor G depends on both k⊥ and k‖ allows
a different dynamics over more manifolds than the con-
ventional ‘dual’ 2D-2C turbulent cascade, inverse for en-
ergy, direct for enstrophy. More precisely, the cartoon
of Figure (1) is consistent with a drain of energy to-
wards smaller and smaller k⊥, as for the inverse cascade
in 2D or in quasigeostrophic turbulence, but also towards
larger and larger k‖ as for a direct cascade.
We now need to compare the relative amounts of direct
and inverse cascades, since the R-type triads allow both
senses. Exact statistical Lin-type equations are(

∂t + 2νk2
)
e(tor) = T (tor) (12)(

∂t + 2νk2
)
e(w) = T (w) (13)(

∂t + 2νk2 + 2iNk⊥/k
)
Z = T (z) (14)

in which e(tor) corresponds to u(1)u(1)∗/2, and e(pol)

and e(pot) to u(2)u(2)∗/2 and u(3)u(3)∗/2 respectively.
e(w) = e(pol) + e(pot) is the total energy of gravity
waves, and Z quantifies the unbalance between kinetic
(poloidal) and potential (buoyancy) parts of the total
wave energy. The real part of Z is (1/2)(e(pol) − e(pot)),
and its imaginary part contains the poloidal-buoyancy
flux (details in [11]). The closure of the transfer terms
(rhs of 4–Eq. (17)) is found in terms of the above
mentioned spectra, depending on both k⊥ and k‖, or
equivalently on k and cos θ = k‖/k, for the simplest
statistical symmetry consistent with the dynamical basic
equations which is axisymmetry with mirror symmetry.
For instance, T (tor) is an integral of purely toroidal triple
correlations 〈u(1)(k, t)u(1)(p, t)u(1)(q, t)〉, and is mod-
elled by terms such as θkpqe(tor)(q, t)(a(k,p)e(tor)(p, t)−
b(k,p)e(tor)(k, t)) once closed by the anisotropic
EDQNM procedure. Detailed equations and
DNS/EDQNM comparisons, including the angle-
dependent spectra, are given in [12]. Here, we simplify
the EDQNM2 procedure in order to focus on pure
toroidal interactions and to reach ranges of very high
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Reynolds numbers Re, very low Froude numbers Fr,
and long elapsed times, out of grasp of current DNS.
The simplest run is started with zero poloidal and zero
potential energy. In this oversimplified configuration,
the flow is purely horizontal but not 2D. Only equation
(Eq. (5)) in the full system remain, and U (tor) is ini-
tially distributed as in isotropic turbulence, i.e. with no
angular dependence.

4 Unstable case

Because there is an important buoyancy-driven produc-
tion of energy, already shown by RDT, the detailed anal-
ysis of nonlinear dynamics is less important than in the
stable case. Generalized Lin-type equations, however,
are still useful in terms of the four spectra: The three
kinds of energy density, e(tor), e(pol), e(pot) and the spec-
trum of the poloidal buoyancy flux F . is the same, with
only an implicit buoyancy-driven effect in the nonlin-
ear toroidal energy transfer. The system of equations
(Eq. (15)–Eq. (17)) is modified as

(
∂t + 2νk2

)
e(pol) + 2N

k⊥
k

F = T (pol) (15)
(
∂t + 2νk2

)
e(pot) + 2N

k⊥
k

F = T (pot) (16)
(
∂t + 2νk2

)
F +N

k⊥
k

(
e(pol) + e(pot)

)
= T (F ). (17)

RDT for second-order statistics is recovered in the limit
of zero spectral transfer terms in the right-hand-side.
In this limit, both spectra of poloidal and potential en-
ergy are affected by the same exponential growth rate
exp(2Ntk⊥/k), so that their difference is only due to
possible different initial data. This exponential growth
affects the spectrum F (k, θk) of poloidal buoyancy flux
as well.
Given the importance of linear dynamics, with forcing of
both poloidal and potential energy, especially near the
2D waveplane, a too refined model of nonlinear interac-
tions such as EDQNM2 is not needed as in the stable
case, so that an axisymmetric EDQNM1 model, with no
explicit N effect in the equations governing triads for
cubic correlations, is in progress.
Finally, our study is to be extended towards Rayleigh-
Taylor instability (RTI). Turbulent mixing zones geer-
ated by RTI, when a heavy fluid and a lighter fluid mix
together by effect of gravity, are classical examples of un-
steady and inhomogeneous flows. At low Atwood num-
ber, however, the mean profile of concentration is quasi-
linear, and the preceding approach to unstable stratifi-
cation is still possible. More details on a common work
in progress can be found in [4, 14,15].

5 Applications to MHD turbu-
lent flows

Classical MHD is governed by two coupled equations, as
turbulence with an additional active vector. The mag-
netic field is governed by a transport equation (the in-
duction equation), which is the same as the one for a
material bipoint, or for the vorticity, up to a specific
diffusion term. This vector is active, having feedback
on the velocity field via the Lorentz force present in the

Navier-Stokes equations.

∂u

∂t
+ u · ∇u− (∇× b)︸ ︷︷ ︸

j

×b = −∇p+ ν∇2u (18)

∂b

∂t
−∇× (u× b) = η∇2b (19)

The generality of MHD equations is only restricted by
the choice of a simplified equation for the current density
j. Except for kinematic, ν, and magnetic, η, diffusivi-
ties, the explicit inclusion of typical physical coefficients
is avoided in the preceding equations by scaling b as a
velocity (b → b/

√
μ0ρ where μ0 is the magnetic perme-

ability and ρ the density).
Emphasis is put on the dynamics and statistics of tur-
bulent electrically conducting fluid in the presence of a
strong magnetic field Va, without mean motion, for var-
ious applications such as geodynamo. In this case, b is
replaced by b+Va in Eq. (18) and Eq. (19), so that addi-
tional linear terms − (∇× b)× Va and − (∇× u)× Va,
are called into play, respectively. Linearized equations
allow us to identify important effects of waves and of
ohmic dissipation. Linear solutions were investigated
by Moffatt [20], with a classical removal of pressure in
Fourier space, taking advantage of the solenoidal prop-
erty of both velocity and magnetic field fluctuations. A
slightly different method is used here, introducing the
two solenoidal components of b, b(1) and b(2), in the
Craya-Herring frame of reference, as for the velocity vec-
tor. Not recalling the definition of this frame of reference,
it is useful to retain that our general velocity-magnetic
field is expressed in four variables, u(1), u(2), b(1), b(2),
in which the superscripts (1) and (2) correspond to
toroidal and poloidal contributions, respectively, in phys-
ical space [24].

5.1 The quasistatic limit, revisiting the
nonlinear dynamics

In linearized equations, the magnitude of the magnetic
field, scaled as a velocity, is the Alfvén velocity Va.
Without diffusivity, a non-dispersive wave-equation is
obtained for u(α) ± ib(α), α = 1, 2, corresponding to
Elsasser’s variables, with dispersion law σa = Vak‖.
The differential diffusivity between velocity and mag-
netic fields is responsible for a very important effect:
Alfvén waves are not only modulated by a diffusive effect,
as they would if ν = η, they are completely suppressed in
a specific axisymmetric, around V a, spectral domain in
term of k⊥ and k‖, at a given magnetic Prandtl number
different from 1.
The important quasi-static régime [17] is permitted in
a liquid metal by the very low value of the magnetic
Prandtl number (e.g. 1.410−7 in mercury), and was the
object of many studies, from pioneering experiments in
Grenoble. In this regime of low magnetic Reynolds num-
ber (more precisely low Lundquist number), the induc-
tion equation is simple enough to be solved explicitely
and to yield a close expression of the Lorentz force in
term of the velocity. Contrasting results from nonlinear
evolution with simple analytical results obtained in the
purely linear régime, it appeared that the role of non-
linearity on various second-order statistics was not com-
pletely clarified. The nonlinearity is important because
it is possible to consider a high Reynolds velocity flow
in the low magnetic Reynolds limit, because of the very
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small value of the magnetic Prandtl number. Our specific
studies, starting from [25] with axisymmetric EDQNM,
were recently resumed using high resolution DNS [26],
then both DNS and EDQNM [27]. Analysis of second
and third-order statistics were consistent with the fol-
lowing Lin equations for toroidal e(tor) and poloidal e(pol)
energy spectra, with the same linear operator but with
different transfer terms T (tor) and T (pol) mediated by
nonlinear interactions:

(
∂

∂t
+ 2νk2 + 2M2

0 cos2 θk
)

e(tor)(k, cos θk, t) =

T (tor)(k, cos θk, t), (20)

(
∂

∂t
+ 2νk2 + 2M2

0 cos2 θk
)

e(pol)(k, cos θk, t) =

T (pol)(k, cos θk, t), (21)

where θk is the angle between the wave vector and the
axial direction, and M2

0 = V 2
a /η gives the magnitude

of the Lorentz force, reduced to an anisotropic ohmic
dissipation. The angle-dependent term cos θk = k‖/k
characterizes the anisotropy (axisymmetry) and means
in the linear operator that axial Fourier modes, aligned
with the imposed magnetic field, are rapidly dissipated
whereas transverse ones remain unchanged.
If these equations, exact in homogeneous turbulence,
are started with isotropic initial data, e(tor) = e(pol) =
E(k)/(4πk2), the linear evolution yelds eventual two-
dimensionalization, as a complete concentration of spec-
tral energy in the transverse spectral plane k‖ = 0,
or equivalently removal of the variability of velocity
components in the axial direction in physical space.
On the other hand, equipartition in terms of poloidal
and toroidal components is preserved, so that two-
dimensionalization, in the Taylor-Proudman sense, pre-
serves both ‘2D-2C’ (two-dimensional, two-component)
vortical structures, with pure transverse velocity and ax-
ial vorticity, given by the 2D limit of toroidal modes,
but also ‘2D-1C’ jettal structures, with axial up-and-
down velocity, given by the 2D limit of poloidal modes.
In other words, the total energy distribution, or e =
(e(pol) + e(tor))/2 becomes 2D, but polarization of this
energy, or Z = (e(pol) − e(tor))/2 remains zero.
As a consequence, the typical ratio of Reynolds stress
anisotropy, or 〈u2‖〉/〈u2⊥〉, and of vorticity anisotropy
〈ω2
‖〉/〈ω2

⊥〉, initially equal to 1 (3D-3C isotropy) tends
to a factor 2 in the linear inviscid régime. Our main re-
sult is to confirm that the nonmonotonic evolution of the
Reynolds stress anisotropy ratio, found in preceding DNS
but attributed to a nonlinear ‘return-to-isotropy’ effect,
results in fact from the rise of polarization anisotropy,
fed by the development of polarization nonlinear trans-
fer T (tor)−T (pol) in Eq. (20),Eq. (21). Eventually, when
both toroidal and poloidal energy components becomes
almost 2D (2D-3C), axial contribution to the velocity
field is rapidly decreasing versus its transverse counter-
part, because Eq. (20) for e(tor) behaves as 2D (2D-2C)
turbulence for purely vortical mode, with inverse cas-
cade and therefore low dissipation, whereas Eq. (21) for
e(pol) behaves as the one for a passive scalar in 2D turbu-
lence, with direct cascade and therefore strong dissipa-
tion. This is illustrated in Figure (1) using both EDQNM

Figure 4: Angle-dependent energy spectra, DNS (full
lines) and EDQNM2 (dots)

Figure 5: Same as Figure (4), with higher nonlinearity
(smaller interaction parameter N

and DNS, with spectral slope k−3 for e(tor)(k‖ → 0) and
spectral slope k−1 for e(pol)(k‖ → 0).
Many other statistical results, from angle-dependent
spectra, in terms of both ‘shell-to-shell’ and (axisymmet-
ric) ‘ring-to-ring’ distributions, to other averaged indica-
tors, like Moreau or Shebalin angles, and integral length-
scales, are provided by DNS and axisymmetric EDQNM
in a completely consistent way.

5.2 Higher magnetic Reynolds number,
introducing rotation

Without rotation, if we increase the magnetic Reynolds
number, the role of induction equation is recovered, as
the rise of Alfvén waves, and the kinetic and magnetic
energies equilibrate after damped oscillations in the limit
of large Lundquist number.
The superposition of rotation and an imposed magnetic
field leads to a competition between Coriolis and Lorentz
forces. The solutions of the linearized system can be
found in term of the four variables u(1), u(2), b(1), b(2). It
depends on the dispersion relation of magneto-inertial
waves which is

σmi =
1
2
i
(
±σi ±

√
σ2i + 4σ2a

)
, (22)

in which σa = Vak‖ and σi = 2Ωk‖/k are the individ-
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Figure 6: Equatorial (k‖ = 0) energy spectra, toroidal
(blue) and poloidal (red). EDQNM2 allows a dramatic
increase for the Reynolds number vs. DNS

Figure 7: 2D-3C EDQNM (dots) and DNS (full lines).
Poloidal (jettal in the 2D limit, red) mode and toroidal
(vortical in the 2D limit, blue) mode

Figure 8: Visualizations of magneto-inertial wave pack-
ets. The vertical (axial, along V a and Ω) component u‖
of the velocity is presented in a vertical plan containing
the initial impulse. umax is the maximum value of the
vertical velocity. The dots indicate the vertical position
of the initial perturbation. (a) Pure Alfvén waves. (b)
and (c) Magneto-inertial waves with increasing rotation
rates. (d) Pure inertial waves.

ual dispersion laws for Alfvén and inertial waves, respec-
tively, when the molecular and Joule dissipations are ne-
glected. The important parameter for the interaction is
the Elsasser number

Λ = V 2
a /(2Ωη) = M2

0 /(2Ω). (23)

Linear analysis, with visualizations of magneto-inertia
wave packets given if Figure (2) is completed by an in-
vestigation by DNS of the role of rotation. It is shown
how increasing rotation prevents more and more equipar-
tition in terms of kinetic and magnetic energy, in inhibit-
ing the rise of magnetic energy. In addition to various
statistical results, the probability density function of the
cross correlation between u and b is calculated in [28].
As rotation increases, we move from a quasi-alignment
of u and b to a quasi orthogonality.

5.3 Achievements and perspectives

Our studies show the interest of an exact separation of
linear and nonlinear terms in dynamical equations, using
poloidal and toroidal Spatial Fourier Harmonics. This is
in agreement with exact removal of pressure fluctuation
in these equations and related treatment of solenoidal
property for both velocity and magnetic fields. Exact
generalized Lin equations are found and extensively used
in the three cases: (e, Z,H (energy, including directional
anisotropy or dimensionality, polarization and helicity
spectra) equations in rotating turbulence (see Cambon
& Jacquin, 1989, in [24]), Eqs. (12-14) for stably strat-
ified turbulence, Eqs. (15-17) for the unstable case,
and Eqs. (20-21) for QS MHD. Approach to the full
spectral tensor of double velocity correlations is possible
in anisotropic turbulence, in terms of a minimal num-
ber of angle dependent spectra, illustrating directional
anisotropy and polarization anisotropy. All related two-
point and one-point statistics are derived of the preced-
ing spectra by exact quadratures (or summations using
discretized DNS fields). Exploitation of ‘shell-to-shell’
as well as ‘ring-to ring’ distribution and multiscale in-
teractions in Fourier space is illustrated by similar tools
in DNS and anisotropic ‘tradic’ closure theory, EDQNM
type here.
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The simultaneous presence of several different phases 
in external or internal flows such as gas, liquid and 
solid is found in daily life, environment and numerous 
industrial processes. These types of flows are termed 
multiphase flows, which may exist in different forms 
depending on the phase distribution. Examples are gas-
liquid transportation, crude oil recovery, circulating 
fluidized beds, sediment transport in rivers, pollutant 
transport in the atmosphere, cloud formation, fuel 
injection in engines, bubble column reactors and spray 
driers for food processing, to name only a few. As a 
result of the interaction between the different phases 
such flows are rather complicated and very difficult to 
describe theoretically. For the design and optimisation 
of such multiphase systems a detailed understanding of 
the interfacial transport phenomena is essential. For 
single-phase flows Computational Fluid Dynamics 
(CFD) has already a long history and it is nowadays 
standard in the development of air-planes and cars 
using different commercially available CFD-tools. 

Due to the complex physics involved in multiphase 
flow the application of CFD in this area is rather 
young. These guidelines give a survey of the different 
methods being used for the numerical calculation of 
turbulent dispersed multiphase flows. The Best Practice 
Guideline (BPG) on Computational Dispersed 
Multiphase Flows is a follow-up of the previous 
ERCOFTAC BPG for Industrial CFD and should be 
used in combination with it. The potential users are 
researchers and engineers involved in projects requiring 
CFD of (wall-bounded) turbulent dispersed multiphase 
flows with bubbles, drops or particles. 
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