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The ERCOFTAC Best Practice 

Guidelines for Industrial 

Computational Fluid Dynamics 

The Best Practice Guidelines (BPG) were commissioned by 
ERCOFTAC following an extensive consultation with 
European industry which revealed an urgent demand for such 
a document. The first edition was completed in January 2000 
and constitutes generic advice on how to carry out quality 
CFD calculations. The BPG therefore address mesh design; 
construction of numerical boundary conditions where 
problem data is uncertain; mesh and model sensitivity checks; 
distinction between numerical and turbulence model 
inadequacy; preliminary information regarding the limitations 
of turbulence models etc. The aim is to encourage a common 
best practice by virtue of which separate analyses of the same 
problem, using the same model physics, should produce 
consistent results. Input and advice was sought from a wide 
cross-section of CFD specialists, eminent academics, end-
users and, (particularly important) the leading commercial 
code vendors established in Europe. Thus, the final document 
can be considered to represent the consensus view of the 
European CFD community. 
Inevitably, the Guidelines cannot cover every aspect of CFD 
in detail. They are intended to offer roughly those 20% of the 
most important general rules of advice that cover roughly 
80% of the problems likely to be encountered. As such, they 
constitute essential information for the novice user and 
provide a basis for quality management and regulation of 
safety submissions which rely on CFD. Experience has also 
shown that they can often provide useful advice for the more 
experienced user. The technical content is limited to single-
phase, compressible and incompressible, steady and unsteady, 
turbulent and laminar flow with and without heat transfer. 
Versions which are customised to other aspects of CFD (the 
remaining 20% of problems) are planned for the future. 
The seven principle chapters of the document address 
numerical, convergence and round-off errors; turbulence 
modelling; application uncertainties; user errors; code errors; 
validation and sensitivity tests for CFD models and finally 
examples of the BPG applied in practice. In the first six of 
these, each of the different sources of error and uncertainty 
are examined and discussed, including references to 
important books, articles and reviews. Following the 
discussion sections, short simple bullet-point statements of 
advice are listed which provide clear guidance and are easily 
understandable without elaborate mathematics. As an 
illustrative example, an extract dealing with the use of 
turbulent wall functions is given below: 

• Check that the correct form of the wall function is being 
used to take into account the wall roughness. An 
equivalent roughness height and a modified multiplier in 
the law of the wall must be used. 

• Check the upper limit on y+. In the case of moderate 
Reynolds number, where the boundary layer only 
extends to y+ of 300 to 500, there is no chance of 
accurately resolving the boundary layer if the first 
integration point is placed at a location with the value of 
y+ of 100. 

 

• Check the lower limit of y+. In the commonly used 
applications of wall functions, the meshing should be 
arranged so that the values of y+ at all the wall-adjacent 
integration points is only slightly above the 
recommended lower limit given by the code developers, 
typically between 20 and 30 (the form usually assumed 
for the wall functions is not valid much below these 
values). This procedure offers the best chances to 
resolve the turbulent portion of the boundary layer. It 
should be noted that this criterion is impossible to satisfy 
close to separation or reattachment zones unless y+ is 
based upon y*. 

• Exercise care when calculating the flow using different 
schemes or different codes with wall functions on the 
same mesh. Cell centred schemes have their integration 
points at different locations in a mesh cell than cell 
vertex schemes. Thus the y+ value associated with a 
wall-adjacent cell differs according to which scheme is 
being used on the mesh. 

• Check the resolution of the boundary layer. If boundary 
layer effects are important, it is recommended that the 
resolution of the boundary layer is checked after the 
computation. This can be achieved by a plot of the ratio 
between the turbulent to the molecular viscosity, which 
is high inside the boundary layer. Adequate boundary 
layer resolution requires at least 8-10 points in the layer. 

All such statements of advice are gathered together at the end 
of the document to provide a ‘Best Practice Checklist’. The 
examples chapter provides detailed expositions of eight test 
cases each one calculated by a code vendor (viz FLUENT, 
AEA Technology, Computational Dynamics, NUMECA) or 
code developer (viz Electricité de France, CEA, British 
Energy) and each of which highlights one or more specific 
points of advice arising in the BPG. These test cases range 
from natural convection in a cavity through to flow in a low 
speed centrifugal compressor and in an internal combustion 
engine valve. 
 
Copies of the Best Practice Guidelines can be acquired from: 

Ms. Anne Laurent, 
ADO-Ercoftac, 
Avn. Franklin Roosevelt 5 
B-1050 Brussels, Belgium. 
 
Tel:  +32 2 642 2800,  Fax:  +32 3 647 9398 
Email:  anne.laurent@ercoftac.be 

The price per copy (not including postage) is: 

Non-ERCOFTAC members:       150 Euros 
Non-ERCOFTAC academics:       75 Euros 
 
ERCOFTAC members:               100 Euros 
ERCOFTAC academic members: 50 Euros 

 



Dispersed Multiphase Flow: From Micro-Scale to
Macro-Scale Numerical Modelling

Martin Sommerfeld

Zentrum für Ingenieurwissenschaften, Martin-Luther-Universität Halle-Wittenberg,
D-06099 Halle (Saale), Germany

martin.sommerfeld@iw.uni-halle.de

The sizes of particles in nature and technical or indus-
trial multiphase flow processes may range from several
nano-meters to several centimetres. On the other hand
the transport and interaction of particles (representing
solid particles, droplets or bubbles) in turbulent flows
is governed by a number of physical processes occurring
on a wide range of different scales. Such processes are
exemplarily summarised in Table 1. The direct interac-
tion between particles occurs on very small length scales
which are only a small fraction of the particle size. This is
for example the film thickness between colliding bubbles
or the distance over which the adhesive van der Walls
force is acting. The transport of particles by turbulence
may be affected by the entire spectrum of eddy sizes
ranging from the dissipation length scale (Kolmogorov
length scale) to the dimension of the device inducing
the flow (e.g. stirrer blade). The importance of particle
transport by turbulence normally is characterised by the
Stokes number, being the ratio of particle response time
to the relevant turbulent time scale.

From these considerations it is obvious that a numer-
ical calculation of dispersed multiphase flow systems is
not possible by just using one numerical approach. An-
ticipating the prediction of an industrial process requires
the use of a number of models describing sub-grid scale
processes, which are smaller than the mesh size used for
discretising the flow system. A real multi-scale simu-
lation is hardly possible and limited to a few orders of
magnitude in the scale dimension. One example is the
method proposed by Tomiyama (2002) where a hybrid
approach combining an interface tracking method with
a multi-fluid model for a certain number of particle size
classes was developed. An ideal application of this multi-
scale hybrid approach was a heterogeneous bubbly flow.

Normally, however different numerical methods have
to be used in order to resolve a certain scale range.
With high resolution simulations (micro-scale simula-
tions) the considered process can be analysed, under-
stood and hence models can be derived which may be
used in methods resolving only larger scales, i.e. macro-
scale simulations. An essential step in the model devel-
opment is the validation based on experiments or high
resolution simulations. Some of the numerical methods
being mostly used for analysing particle behaviour and
transport on different scales are summarised in Table 2.
Due to the limitation in computational resources micro-
scale simulations (e.g. particle resolved DNS) are limited
to small computational domains and only a few hundreds
of particles. On the other hand RANS-based methods
(based on the Reynolds-averaged conservation equations
combined with turbulence modelling) allow macro-scale
simulations of an entire process with limited spatial res-
olution. Here the particles are treated as point masses.

Furthermore, models are needed for all the sub-grid-scale
processes, such as turbulence effects or inter-particle col-
lisions. Multiphase flows are treated using either the
multi-fluid model (also referred to Euler/Euler model) or
the Euler/Lagrange approach where the particle phase is
simulated by tracking a large number of representative
point-particles through the flow field for obtaining the
properties of the dispersed phase. It is clear, that the
degree of modelling increases with reduced scale resolu-
tion.

Diffusive mass transport within Molecular scale
the particle and in the bulk flow
Film thickness between coalescing 10nm - 100nm
bubbles or droplets
Range of van der Waals forces in 0.4nm - 50nm
solid particle interaction
Particle transport by turbulence Kolmogorov
in the dissipation regime lengthscale

η =
(
v3/ε
)1/4

Particle transport by large scale L/η = Re3/4
L

eddies L
Flow structure around particles Particle size
Particle interaction (collision) Particle size

Table 1: Comparison of physical processes and relevant
length scales.

Molecular dynamics Simulation of molecular motion
simulation
Particle resolving DNS Resolving the particle

and the flow around it
Point-particle DNS Resolving the dissipation scale

of turbulence, particles are
treated as point masses

LES Resolves large-scale vortices and
the spectrum of larger turbulence,
particles treated as point-masses

RANS-methods Resolves only the mean flow
structure, particles treated as
point-masses

Table 2: Comparison of numerical methods and their
resolution.

The present special issue of the ERCOFTAC Bulletin
tries to address the above described issues and presents
numerical methods and results obtained with different
scale resolution. With exception of molecular dynamic
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simulations, contributions using all the other numerical
methods are included. Regarding the latter methods in
Table 2, contributions are included using the two-fluid
approach and the Euler/Lagrange method. The special
issue gives a good overview of the present research ac-
tivities within the special interest group 12: ‘Dispersed
Turbulent Two-Phase Flow’.

References
Tomiyama, A., Some attempts for the improvement of computa-
tional bubble dynamics, CD-ROM-Proceedings 12th Workshop on
Two-Phase Flow Predictions, Merseburg, Germany, 9-12th. April
2002.
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Direct Numerical Simulation of High Schmidt Number
Mass Transfer from Air Bubbles Rising in Liquids Using

the Volume-of-Fluid-Method
A. Alke1, D. Bothe1, M. Kröger1, B. Weigand2, D. Weirich1, H. Weking2

1 Mathematical Modeling and Analysis, Center of Smart Interfaces, Technical University Darmstadt, Germany.
2 Institute of Aerospace Thermodynamics, University of Stuttgart, Germany.

Abstract

We present a combined VOF-based approach for the
direct numerical simulation of mass transfer across de-
formable fluidic interfaces in 3D. For this purpose and
in order to resolve all relevant length scales for moderate
Reynolds and Schmidt numbers in convection dominated
cases, several computational techniques are employed.
In particular, we build on a subgrid-scale model for the
concentration boundary layer at the interface, a moving
frame of reference technique, and a local mesh refine-
ment around the bubble. Furthermore, we show a first
result employing so-called artificial boundary conditions
to reduce the size of the computational domain in lateral
direction.

1 Introduction

In Chemical Engineering, dispersed gas / liquid mass
transfer operations are often realized in bubble column
reactors, especially for performing chemical reactions like
hydrogenations, oxidations, or chlorinations. The overall
process evidently involves multiple scales. On the macro-
scale, the bubbly flow circulates depending in particular
on the reactor design and on the operating conditions.
This leads, on the one hand, to dispersion of the gas
content and, on the other hand, to segregation. The re-
sulting velocity gradients close to the reactor walls lead
to a lift force acting on each individual bubble. This
lift force shows a change of sign under variation of the
bubble diameter resulting in the fact that small bubbles
move to the reactor walls where larger gradients in the
relative velocity appear, whereas large bubbles move to
the opposite direction, i.e. to the center of the column.
This behavior leads to a gas plume which itself can be-
come unstable and move around. On the meso-scale,
bubble fragmentation and bubble / bubble interactions
such as bouncing and coalescence without and with sub-
sequent fragmentation occur. These processes determine
the bubble population’s size distribution and, hence, in-
fluence massively the efficiency of the overall process.
The bubble diameter distribution determines not only
the volume specific interfacial area, which is significant
for the transfer rates, but also the local velocity field
around the bubble. In particular the wake structure is
of immense importance since it is responsible for the con-
vective transport of the transfer component away from
the interface, hence keeping a driving concentration gra-
dient at the bubble surface. Moreover, in case of reactive
mass transfer, the bubble wake can be considered as a
mini reactor since chemical reaction takes place mainly
there. The (diffusive) inter-phase mass transfer and the

micro-mixing process as well as the chemical reaction it-
self occur on the micro-scale.

A detailed continuum mechanical model of the full
process has to be based on the two-phase Navier-Stokes
equations complemented by two-phase species equations
and, if necessary, by the two-phase energy balance equa-
tion. However, it is not possible to numerically solve the
full model resolving the full phase topology and all rel-
evant scales in detail. Hence different CFD models of
this process are required and used at the different scales
(Figure 1).

For the overall process with a large gas hold-up, the
Euler / Euler formulation is the common approach; here
both phases, i.e. the continuous as well as the dispersed
phase, are treated as interpenetrating continua. In this
model most of the local information concerning individ-
ual bubble shape and size is lost and modeling assump-
tions are necessary.

Figure 1: Model hierarchy for CFD simulations.

For smaller gas hold up, the Euler / Lagrange formu-
lation is possible where ordinary differential equations
of motion are solved for individual dispersed particles
(Lagrangian formulation) whereas the flow of the con-
tinuous phase is solved in the Eulerian frame. Here cer-
tain information concerning location and velocity of rep-
resentative particles is available, but local information
concerning bubble shape and inner velocity field is still
missing. For both the Euler / Euler as well as the Eu-
ler / Lagrange formulation closure terms are needed to
account for the exchange of mass and momentum be-
tween the phases. As sketched in Figure 1, the modeling
effort and the computational effort change in opposite
directions. Once a closure model is assumed, its model
parameters can be obtained from experiments, but also
from computational analysis based on results from Di-
rect Numerical Simulation (DNS). The latter refers to
the detailed model based on first principles and its nu-
merical simulation with sufficient resolution in time and
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space in order to resolve all present scales. DNS is de-
sired if operating conditions are not experimentally fea-
sible, e.g. a defined velocity gradient for determining the
lift force coefficient, or if local information is not acces-
sible by measurements. However, due to the limits of
current (super-)computers in computational power, only
few fluid particles can be treated by means of a true DNS.
Furthermore, a combined experimental and DNS analy-
sis is possible in certain cases. For example the experi-
mental analysis of the mass transfer from a rising bubble
requires an adequate resolution of the velocity and the
concentration fields in the continuous phase. This is not
possible today, especially for the velocity field near the
interface with available experimental techniques. Con-
trary, the relevant hydrodynamic scales can be resolved
by DNS while the resolution of the concentration bound-
ary layer is hardly possible. The smallest length scale
for species transport is the Bachelor length scale, which
is 1/
√
Sc times the hydrodynamic length scale; here the

Schmidt number is defined as Sc = υ/D and has typical
values of several hundred for aqueous systems. But for
mass transfer the thin concentration layer at the region
above the equator is crucial, since most of the transfer
takes place there. For DNS of two-phase flow several nu-
merical techniques are available which are able to resolve
the free phase boundary like the Volume of Fluid (VOF),
Level Set or Front Tracking method.

In the present paper a VOF-based approach for sim-
ulating mass transfer of dilute components from rising
bubbles is presented [BKAW09, ABKW09] and com-
bined with several computational techniques for captur-
ing the thin concentration boundary layer at least for
moderate Reynolds and Schmidt numbers. In particu-
lar, we employ a subgrid-scale model for the concentra-
tion profile, a moving frame of reference technique, and
a local mesh refinement around the bubble [WHW09].
While the second technique is to reduce the computa-
tional domain in rise direction, we currently also develop
so-called artificial boundary conditions to reduce the lat-
eral computational domain size.

2 Mathematical model and numerical
method

2.1 Hydrodynamics

The mathematical model is based on the one-field for-
mulation of the isothermal, incompressible momentum
balance in the buoyancy formulation:

∇ · u = 0 (1)

∂(ρu)
∂t +∇ · (ρu⊗ u) = −∇pdyn

+∇ · (μ (∇u + (∇u)T))

+ (ρ− ρc) g + fσ
(2)

The buoyancy formulation is chosen because no solid
wall but an outflow boundary condition is applied at
the bottom of the computational domain such that no
hydrostatic pressure can be build up. For the numeri-
cal solution of (1) and (2), the Volume-of-Fluid (VOF)
method by Hirt and Nichols [HN81] is employed. There
the phase volume is tracked by solving the additional
transport equation

∂f

∂t
+∇ · (f u) = 0 (3)

for the phase indicator function f , which in the context of
a Finite Volume discretization corresponds to the volume
fraction of dispersed phase inside computational cells.
For the given f -distribution, the local density and the
viscosity of the fluids are calculated by

ρ = fρd + (1− f) ρc, μ = fμd + (1− f)μc (4)

Simulations are performed using the ITLR inhouse
code Free Surface 3D (FS3D) [Rieb04]. The surface ten-
sion is represented by a volume force fσ in the momen-
tum equation, which is computed using the conservative
continuum surface stress (CSS) model by Lafaurie et al.
[LNSZZ94]. The reconstruction of the interface, which is
used for convection of the volume fraction, is based on
the piecewise linear interface calculation (PLIC) method
by Rider and Kothe [RK98]. FS3D uses a structured
finite volume scheme on a staggered (MAC) grid. The
spatial discretization is of second order accuracy and the
temporal discretization is of first order accuracy.

2.2 Mass transfer
Under the additional assumptions that the transfer
species are ideally diluted regarding the mass and mo-
mentum balances, no phase change like evaporation or
condensation occurs, the transfer component is not sur-
face active and local thermodynamical equilibrium holds
at the interface Σ(t), the two-phase species equations
read as

∂tck +∇ · (cku + jk) = Rk in Ωc(t) ∪ Ωd(t) (5)

[jk] · nΣ = 0 and cdk
/
cck = Hk on Σ(t) (6)

jk = Dk∇ck, Dk > 0 (7)
Here the source term Rk stands for the overall produc-

tion rate of the chemical component k if chemical reac-
tions take place. Local thermodynamical equilibrium is
modeled by Henry’s law with constant distribution coef-
ficient Hk. From the first assumption it follows that the
diffusive flux jk can be calculated according to Fick’s
law and that the transfer component has no influence on
the local momentum such that the common barycentric
fluid velocity u is governed by a single set of two-phase
Navier-Stokes equations. Due to the last assumptions
and the isothermal conditions, no surface tension gradi-
ents are present, i.e. no Marangoni stresses appear at
the interface.

Our numerical approach is based on the VOF method
and uses two scalar variables for the concentration field
of any transfer component, one for each phase according
to

φjk(x, t) =
{
ck for x in Ωj(t)

0 otherwise (8)

Note that these variables are similar to the VOF vari-
able f . Hence the convective transport of molar mass
can be directly intertwined with the convective transport
of the phase volume employing the PLIC reconstruction
of the interface. In this manner artificial mass trans-
fer induced by numerical diffusion due to the convective
transport step is prevented.

Mass transfer across the interface is modeled by an
interchange term accounting for local thermodynamical
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equilibrium at the phase boundary. According to (6),
the normal component of the diffusive flux is continu-
ous at the interface since no accumulation occurs at the
interface. Therefore only a single one-sided limit of the
concentration gradient is needed for the calculation of
the local flux across the interface. In case of rising gas
bubbles, the concentration gradient on the continuous
liquid phase side is more suitable for this purpose due
to the larger mass transfer resistance there. Applying
directional splitting, the normal component of the mass
transfer flux inside an interfacial cell Vi is given as

jΣinΣi |AΣi | = (jΣi,xnΣi,x + jΣi,ynΣi,y + jΣi,znΣi,z) |AΣi |
(9)

where |AΣi | is the area of that part of the interface ly-
ing in Vi; for better readability, the species index k is
dropped in (9) and below. As well as for all other trans-
port schemes in FS3D which employ directional split-
ting, the three spatial directions are processed succes-
sively and the order of this sequence is altered in each
time step in order to prevent systematic errors. Only
directions to neighboring cells completely filled with the
continuous phase are considered. For the 1D calcula-
tion of the one-sided limit of the concentration gradient
appearing in the components of the Fickian fluxes, i.e.
jΣi,x = Dckdck/dx|Σi , the intermediate values φdk,i/Hk
and φck,nb are used. The x-coordinate nΣi,x of the inter-
face normal as well as the interfacial area |AΣi | of that
part of the interface lying in Vi are determined from the
phase volume distribution. The approach is conservative
concerning the molar mass of all transfer components
and allows for variable distribution coefficients without
artificial mass transfer due to convection of the discon-
tinuous concentration fields.

However, in case of aqueous systems with Schmidt
numbers of the order of 100 and well above, the concen-
tration gradient is extremely steep in convection domi-
nated cases and it is therefore a big challenge to capture
this thin concentration boundary layer. In the following,
additional computational and modeling techniques are
described which help to increase the resolution near the
interface.

2.3 Subgridscale Model

The concentration profiles result from the two-phase
species equations (5) which are invariant under a trans-
formation into a coordinate system moving with the
barycenter of the bubble. Therefore, a flow passing
around the fluid particle is considered for the derivation
of an appropriate subgrid-scale model. Zooming into
the interface region around the equator of the bubble,
where most of the mass transfer takes place, the situa-
tion can be approximated by a planar fluidic interface
moving without slip to the adjacent liquid. In the lat-
ter phase a concentration layer is build up by convection
and diffusion. In this simplified 1D model, it is assumed
that the interface and the adjacent liquid move parallel
and laminar with constant velocity u, diffusion in flow
direction is negligible, and the dispersed gaseous phase
is homogeneously mixed. Due to the last assumption,
the jump condition (6) can be substituted by a Dirichlet
condition for the liquid phase concentration. Figure 2
illustrates this setting.

Figure 2: Simplified 1D model.

For the stationary case and for an inflow concentration
of cin = 0 , the analytical solution for the concentration
profile is

c(x, y) = ccΣ
(

1− erf
(
x

δ(y)

))
with δ(y) = 2

√
Dcy

v
(10)

and the concentration gradient at the interface (in nor-
mal direction) is

∂c

∂x |Σ
= − 2√

π

ccΣ
δ

(11)

Equation (10) is used to determine the characteristic
length δ by a Newton iteration using discrete interme-
diate values of φcj after the convective transport step of
the considered interfacial cell i and the neighbor cell if
the latter lies completely in the continuous phase. Then,
the x-component of the flux jΣi ,x is computed from (11),
thus accounting for nonlinearities of the concentration
profile at the interface. Again, in both steps the relation
ccΣi = cdΣi

/
H is employed.

The diagram in Figure 3 shows the decrease of (ini-
tially normalized) molar mass inside a fluid particle rising
in a liquid with a Schmidt number of Sc = 10 with time
obtained from 2D simulations with different resolutions.
Curves obtained without subgrid-scale model, i.e. with
a linear concentration gradient (grey line), at resolution
level B and C as well as curve obtained with subgrid-
scale model (dark line) at resolution A are congruent but
steeper than the curve obtained without subgrid-scale
model at resolution A. These results indicate firstly, that
grid independency is already reached with grid B. With
the coarse grid A the concentration layer is not fully re-
solved so that the linear gradient calculation leads to a
too small transfer rate. Secondly, a factor of at least
2 (in each direction) is saved when using the subgrid-
scale model. Similar results are obtained for Sc = 100
but there one more refinement of a factor 2 is required
to reach grid independency. Here, the time saving due
to subgrid-scale model is huge. A 2D simulation with
double fine resolution as with grid C already lasts about
three weeks while simulation with grid resolution C runs
only four to five days on the present computer cluster in
Darmstadt. The cluster consists of 20 nodes with two
Intel Xeon Quad Core processors per node and 4 GB
of main memory per core. For physical 3D simulations
further techniques are needed to reduce cell number.
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Figure 3: Change of normalized molar mass inside a
3mm fluid particle rising in a liquid with Sc = 10 with-
out (grey) and with subgrid-scale model (dark) obtained
by 2D simulations with different grids.

2.4 Moving Frame of Reference
In order to observe the rise behaviour of gaseous bub-
bles over a large period of time and thus over a long
rising path, a moving frame of reference is employed.
This technique induces a counter flow in the computa-
tional domain, which is adapted dynamically over time
depending on the motion of the centre of mass of the
gaseous phase. The motion of the centre of mass is con-
sidered as a damped oscillation of a point mass around
its initial position. Depending on the displacement and
the velocity of the centre of mass a correcting body force
ρkC is imposed to the flow field by adding it to the right
hand side of the momentum equation (2). This keeps
the bubble close to its initial position in computational
domain, or, from the view of a fixed observer, moves the
computational domain along with the bubble. The cor-
rection force is calculated every time step for all three
spatial dimensions by

kC = 2ω
Pg
m∗

+ C1ω
2Δxg (12)

with the momentum of the bubble, Pg, divided by the
virtual mass of the gaseous phase, m∗, and the displace-
ment vector Δxg. The displacement vector and the mo-
mentum of the gaseous phase refer to the moving frame
of reference. The value of C1 is switched from 1 to 0 if
the centre of mass of the gaseous phase approaches its
initial position. This avoids overshoots in the displace-
ment. The angular frequency ω, governing the hardness
of the dampening and the magnitude of the oscillation
around the initial position, is calculated by

ω = C2

√
ρf
ρg
π ωres = C2

√
ρf
ρg
π

√
12σ
d3eρf

(13)

where ωres is the first mode of the bubble eigenfrequen-
cies, which is multiplied by π and a constant value C2
in order to avoid that ω becomes a higher mode of the
surface resonance frequencies.

This method requires an outflow boundary condition,
allowing eddies to leave the computational domain. For
this reason, the domain is somewhat enlarged by addition
of a damping zone in front of the outflow. This avoids
backflow at the domain boundary while eddies can leave
the undamped main part of the computational domain.
The setup of a cubic domain using the moving frame of
reference is illustrated in Figure 4.

Figure 4: Numerical setup and coordinate system.

2.5 Mass transfer Local mesh refinement
In the past, various approaches have been made to
increase the grid resolution at the free surface of two
phase flows (e.g. [TB04], [Sus05]). FS3D was extended
to generate an interlaced hierarchy of refined patches
with doubled resolution with indices 0 ≤ l ≤ lmax in the
vicinity of the bubble. Grid level l = 0 is the coarsest
level and contains the entire computational domain
(Figure 5), so the general setup of this level is similar
to Figure 4. Each finer patch l is completely embedded
in the next coarser grid level l − 1. The solution on all
patches is advanced with the same time step, i.e. we do
not use subcycling in the cases presented. The boundary
conditions for the refined patch l are taken from the
solution of the coarser patch l − 1 and the solution of
patch l is interpolated to patch l − 1. Both, the inter-
polation of the boundary conditions and of the solution
are conservative. A solution cycle of one time step reads:

1. begin of time step
2. loop over l from 0 to lmax

a. for l �= 0: obtain boundary conditions from
level l − 1

b. solve the governing equations on level l
3. loop over l from lmax to 1

a. interpolate solution of volume fraction field
and velocity field to l − 1

4. Calculate time step size for next time step
(stability constraints)

Figure 5: Hierarchy of refined patches for lmax = 2.

The left side of Figure 6 shows the fine grid result of
a simulation of a rising de = 2mm air bubble in water
using two fine patches. The setup is similar to that in
Figure 5. The coarsest level (outer box in Figure 5) is
bubble diameters wide. Each finer patch l (intermediate
and inner box in Figure 5) has the half width of the un-
derlying patch l − 1 and every patch is resolved by 32
computational cells. On the right side the solution of a
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calculation without refined patches is shown. This case is
resolved by 32 cells in every direction, so in both simula-
tions there is the same spatial resolution at the interface.
The free surface is shown using the corresponding colour
for both cases.

Figure 6: Velocity field and interface with lmax = 2 (left)
and lmax = 0 (right).

Figure 7: Rise velocities of 2mm and 6mm bubble using
lmax = 0, lmax = 1 and lmax = 2.

The computed rise velocities for both cases are plot-
ted along with the result of a third simulation (lmax = 1
in dark grey) which is resolved by 64 cells in every di-
rection (Figure 7). The difference between lmax = 0
and lmax = 2 is less than 5%, whereas the total num-
ber of computational cells and thus the computational
effort are reduced by the factor of 21. Additionally, the
results of simulations using the three different values of
lmax on a 6mm bubble are plotted. The lmax = 1 and
lmax = 0 simulation are predicting the same rise be-
haviour, whereas the rising path of the lmax = 2 case
changes much earlier from the rectilinear regime, indi-
cated by the plateau at the maximum velocity, to a
three dimensional trajectory, indicated by the decrease
in the velocity and the oscillation around a mean value.
The magnitude of this oscillation is much weaker for the

lmax = 2 simulation than for the other two. This be-
haviour indicates that the distance between the bound-
ary of the finest patch and the free surface was chosen
too small in this simulation. With a sufficient number of
computational cells between the patch boundaries and
the bubble, this method allows an immense reduction of
computational effort.

2.6 Artificial boundary conditions

A high resolution usually requires a large number of com-
putational cells. To reduce the necessary computational
effort, the computational domain has to be as small as
possible. FS3D is restricted to structured grids with
cubic cells due to the geometric multigrid solver. This
in turn allows only rectangular computational domains
which implies an unsymmetrical influence especially of
the lateral boundaries on the flow field and, hence, to
the concentration profile if slip or slip free boundary con-
ditions are used. The closer the lateral boundaries are,
the higher is of course their influence. But the goal is
to quantify the mass transfer from gas bubbles rising in
an infinite liquid. Therefore, in simulations presented
above, for both the flow and the concentration field, ho-
mogeneous Neumann boundary condition is applied al-
lowing fluid to enter and leave the domain. However,
this condition does not account for the decay behavior
of the velocity field with increasing lateral distance from
the particle. Basis of the current approach for the ar-
tificial boundary condition is the outer velocity field of
the Hadamard-Rybzcinski (H-R)-solution [Lev63]. Al-
though the latter describes only the creeping flow (Re
< 1) around a fluid particle, there are hints that stream
lines of H-R-type are valid up to Reynolds numbers of Re
= 200 [RK66]. Higher-order terms in 1/r in the (H-R)-
solution are neglected, yielding the asymptotic relation

∂uξ
∂r + 1

r
uξ = 0 as r →∞ (14)

for the spherical velocity coordinates (ur, uθ, uϕ) which
can be used as a Robin type boundary condition.

Figure 8 shows stream lines from 2D VOF-simulations
obtained with different boundary conditions for the
Navier-Stokes equations. The bubble rises with a
Reynolds number of about 10. The grey curves corre-
spond on both sides to stream lines from a reference so-
lution with slip boundary condition at the lateral bound-
aries and a wall distance of 8 bubble diameters. The
black curves correspond to stream lines obtained from
computations with smaller wall distance of 3 bubble di-
ameters. In the left half again the slip condition is ap-
plied, while in the right half the artificial boundary con-
dition from above is applied. Especially at the equator of
the fluid particle, the stream lines obtained with the arti-
ficial boundary condition are in much better accordance
with the reference streamlines than those obtained with
slip condition for small wall distance. The result pre-
sented in Figure 8 is obtained with homogeneous pressure
boundary condition, but it should be mentioned that, in
general, each boundary condition for the velocity field
corresponds to a specific pressure boundary condition
which has not been accounted for so far. The work on
this topic is under development and it is expected that
improved pressure boundary conditions will yield even
better results, allowing for smaller domains or higher res-
olutions.
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Figure 8: Stream lines obtained from 2D simulations with
different wall distances and boundary conditions.

3 Conclusion and Outlook
It is shown how mass transfer from a deformable single
bubble rising over a long distance in a liquid with al-
most realistic Schmidt number can be simulated. This
is important in order to obtain local information for clo-
sure models used in scale-reduced CFD approaches. For
this purpose a recent VOF-based mass transfer approach
is combined with additional techniques such as a mov-
ing frame of reference, local grid refinement and artificial
lateral boundary conditions. With this overall method,
Schmidt numbers of the order of 100 can be handled for
single bubbles under moderate bubble Reynolds num-
bers. The applied techniques are under development and
will be combined and further improved in future work.
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Abstract

Direct numerical simulations of the motion of resolved
volume equivalent single cylindrical particles with axis
ratios of 1, 2, 3, and 4 and Stokes numbers of 1, 2, 4,
and 40 in a homogeneous isotropic turbulent flow field
are presented. The forced turbulent flow is simulated
using the Lattice-Boltzmann-Method (LBM). The par-
ticles are allowed to freely move according to the forces
acting on them obtained from the direct interaction of
fluid elements with the particle surface. First the tempo-
ral evolution and the PDF‘s of the forces and moments
acting on the particles and the resulting velocities in the
axial and radial direction are analysed in dependence of
axis ratio and Stokes number. It is observed that the rms
velocity and the rms angular velocity in longitudinal and
in radial direction are not very different for the consid-
ered particles, even though the rms forces can differ more
than 100% and the rms torque more than 1000% in both
directions. The forces and moments in the radial direc-
tion and their fluctuations increase with the axis ratio, as
the projected area of the particles in the radial direction
becomes larger than that in the axial direction. This is
clearly observed in the correlations between the forces in
the axial and radial direction, which are random for all
considered particles. Furthermore, it is found that the
rms particle velocity decreases with increasing axis ratio
and the rms particle angular velocity has a maximum at
an axis ratio of about 2.0. The ratio of the rms velocity
of the particle to that of the fluid decreases with increas-
ing Stokes number. The ratio between the rms angular
velocities also decrease, but at a much lower rate.

Introduction

The numerical computation of particle-laden flows relies
mostly on the assumption that the particles are spher-
ical and smaller than the Kolmogorov scale. However,
quite often particles are considerable larger and may
therefore not be considered as point masses. Conse-
quently the particles and the flow around it need to be
resolved by the numerical grid. Such kind of simula-
tions are so far mainly done for laminar flows using fi-
nite element approaches with adaptive grids or the force
coupling method (often also called immersed boundary
method). The finite element method is computationally
very expensive since the grid has to be adapted to the
surface of the particle at every time step (Hu 1996). The
immersed boundary method approximately resolves the
particle surface by an additional force term in the Navier-
Stokes equations. This method is numerically more ef-
ficient since the numerical grid is fixed and may have a

simple structure (Lomhold et al. 2002). The motion of
resolved spherical particles in turbulent flows including
particle collisions was studied by Ten Cate et al. (2004)
applying the Lattice-Boltzman-Method which allows for
a rather simple treatment of the boundary condition at
the particle surface.

Numerical simulations on the behaviour of non-
spherical particles in laminar or turbulent flows, which
are from the practical point of view more important, are
however found less frequent. Laminar flows around fixed
non-spherical particles (i.e. mostly ellipsoids) were simu-
lated in order to evaluate the forces acting on such parti-
cles as a function of orientation (e.g. Dwyer and Dandy
1990, Comer and Kleinstreuer 1995 and Hölzer and Som-
merfeld 2009). Such kind of simulations is for example
necessary for evaluating the resistance coefficients of non-
spherical particles at larger particle Reynolds numbers.
An analysis of the motion and oscillation behaviour of
resolved non-spherical particles (i.e. ellipsoidal particles
and cylinders) in a simple shear flow was performed by
Ding and Aidun (2000) and in a Couette flow by Qi and
Luo (2003).

Numerical simulations of turbulent particle-laden
flows are so far mainly performed on the basis of
the point-particle assumption, implying that the non-
spherical particles are smaller than the Kolmogorov
length scale and hence Stokes flow applies where analytic
relations for the different forces are available. The flow
field is generated by a random process or direct numerical
simulations (DNS). The particle motion is calculated ac-
counting for translation and rotation which implies that
also the change of particle orientation is obtained. In
the work of Olson and Kerekes (1998) as well as Olson
(2001) the motion of fibres in turbulent flow was stud-
ied and the dispersion coefficients of these particles were
derived. It was shown that the dispersion coefficient de-
creases as the ratio of fibre length to integral length scale
increases. A similar result was also obtained by Fan and
Ahmadi (1995) for a pseudo-turbulence field simulated
by a Gaussian random model. The dispersion and de-
position of ellipsoidal particles in turbulent channel flow
was analyzed by Zhang et al. (2001) on the basis of DNS
and assuming point-like particles, where translation, ro-
tation and orientation are tracked. For different size and
aspect ratio the particle fluctuating behaviour and their
dispersion was studied.

Hence, for turbulent flow conditions detailed studies
on the dispersion of non-spherical particles are not avail-
able. Therefore, the Lattice-Boltzmann-Method was ap-
plied to analyse the behaviour of resolved cylindrical par-
ticles in homogeneous isotropic turbulence. The ratio
of the volume equivalent particle diameter to the Kol-
mogorov length scale studied here is about 12. In a first
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step, the difference in motion of elongated cylindrical
particles in longitudinal and radial direction is analyzed.
Secondly, the dependence of the particle rms velocity and
rms angular velocity on the Stokes number and the axis
ratio is determined.

Numerical method

The fluid flow is simulated by the Lattice-Boltzmann-
Method (LBM) which is an alternative approach to con-
ventional methods for numerically solving the conserva-
tion equations. Whereas conventional models are based
on the conservation laws formulated at the macroscopic
level, the Boltzmann equation describes the behaviour of
fluids at a microscopic level (i.e. the discrete motion of
small fluid elements). The Lattice-Boltzmann-Method
is based on the Boltzmann equation (He and Luo 1997)
which describes the change of state of the fluid using a
probability distribution function f = f (x, e, t), declaring
the probability of a fluid element to be present at posi-
tion x moving with a velocity of e at a certain instant of
time t:

(
∂

∂t
+ e · ∇

)
f (x, e, t) = −1

τ

(
f (x, e, t)− f (0) (x, e, t)

)

(1)
The three-dimensional phase space is discretised into

cubic cells and nineteen discrete velocities in this case
(called D3Q19 model, Qian et al. 1992), i.e. one veloc-
ity vector for fluid elements at rest (σ = 0), six vertical
or horizontal velocity vectors (σ = 1), and twelve diag-
onal velocity vectors (σ = 2). The velocity vectors are
illustrated in Fig. 1 and read:

eσi =

{ (0, 0, 0), σ = 0, i = 1
(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, σ = 1, i = 1 . . . 6

(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, σ = 2, i = 1 . . . 12
(2)

with c being the lattice constant which is the ratio of
space to time step (c = Δx/Δt). The discretised lattice
Boltzmann equation with single relaxation time (BGK-
model, Qian et al. 1992; Chen et al. 1992) used in the
present work reads:

fσi(x+eσiΔt, t+Δt)−fσi(x, t) = −Δt
τ

(fσi(x, t)− feqσi (x, t))
(3)

where fσi(x, t) is the discrete distribution function rep-
resenting the probability of finding a number of fluid el-
ements with the velocity eσi at the position x and the
time t, feqσi (x, t) being the discrete equilibrium distribu-
tion function, and τ the relaxation time. For the present
simulations the relaxation time is τ = 0.515 . In the
D3Q19 model the discrete equilibrium distribution func-
tion is:

feqσi (x, t) = ωσρ

(
1 +

3eσi · u(x, t)
c2

+
9(eσi · u(x, t))2

2c4
− 3u2(x, t)

2c2

)

(4)
with:

ωσ =

{ 1/3, σ = 0, i = 1
1/18, σ = 1, i = 1 . . . 6
1/36, σ = 2, i = 1 . . . 12

(5)

The macroscopic properties of the fluid, i.e. density
and momentum are obtained through the equations:

ρ(x, t) =
∑

σ

∑

i

fσi(x, t) (6)

and

ρ(x, t)u(x, t) =
∑

σ

∑

i

eσifσi(x, t) (7)

The relaxation time determines the kinematic viscosity
via the relation:

ν =
1
6
c2 (2τ −Δt) (8)

In the present study a homogeneous isotropic turbu-
lence in a cubic box is considered. Periodic boundary
conditions are imposed at the faces of the computational
domain. Single cylindrical particles are moving through
the computational domain according to the forces and
moments acting on them. The curved no-slip boundary
condition introduced by Bouzidi et al. (2001) is applied
on the particle surface. This boundary condition consid-
ers the exact contour of the particle surface within a cell.
The fluid forces acting on the particle are directly eval-
uated from the momentum exchange between the fluid
elements and the particle surface (Bouzidi et al. 2001,
Mei et al. 2002).

Figure 1: Discrete velocity vectors in the D3Q19 model.

Turbulence forcing
Isotropic turbulence is forced by a spectral method
(Eswaran and Pope 1988), where a turbulent motion is
excited at small wave numbers (large length scales). For
this purpose, a force f is generated via the Fourier trans-
formation:

f(x) = a0
2 +

∞∑

k=1
ak cos(ωk · x) +

∞∑

k=1
bk sin(ωk · x)

ak = 2
L

L∫

0
f(x) cos(ωk · x)dx

bk = 2
L

L∫

0
f(x) sin(ωk · x)dx

(9)
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where L is the length of one period and ω = 2π/L the
angular frequency. In this study the forcing acceleration
is defined by wave numbers ki ≤ 2, a0 is set equal to zero,
and ak and ak are determined by a Gaussian random pro-
cess. The generated turbulence intensity is characterised
by the standard deviation of a Gaussian distribution.
Typical turbulence parameters are the turbulent kinetic
energy k, the dissipation rate ε, the Kolmogorov, Tay-
lor and integral length and time scales, and the Taylor
Reynolds number Reτ . The values obtained for the con-
sidered homogeneous isotropic turbulence in a cubic box
of 60x60x60 equidistant cells are summarized in Table 1.
All values are made dimensionless by using Δx and Δt ,
respectively. For the present simulations the Kolmogorov
length scale is about one half of the mesh size. Fig. 2
shows a turbulent flow field including a single cylindrical
particle and Fig. 3 the corresponding energy spectrum.
As mentioned above, the forcing is applied at the first
two wave numbers. The -5/3 line associated with the in-
ertial sub-range (Kolmogorov spectrum) is additionally
plotted in Fig. 3. However, a true inertial sub-range
does not exist due to the rather low Reynolds number of
the simulation.

υ 0.05
k 0.00075
ε 1.10E-06
λK 0.5806
λT 5.8387
λInt 8.9
τK 67.42
τT 314.11
τInt 398.02
ReT 26.112

Table 1: Properties of the homogeneous isotropic turbu-
lence (made dimensionless by Δx and Δt).

Figure 2: Instantaneous velocity field of a turbulent flow
including a single particle for an arbitrary slice through
the computational domain (the ruggedness of the particle
is a result of the plotting software).

Figure 3: Energy spectrum of the turbulent flow field.

Results
In the present simulation cylindrical single particles were
suspended in a homogeneous isotropic turbulent flow
field and were allowed to translate and rotate freely with
linear velocity uPa and angular velocity ωPa. Four cylin-
drical particles with a length to diameter ratio of l/d= 1,
2, 3, and 4 are considered. All particles have an identical
volume equivalent diameter dPa of 12 cells. For changing
the particle Stokes number, which describes the ability
of a particle to follow the fluid flow, the particle ma-
terial density was adjusted accordingly (i.e. ρp = 250,
500, 1,000 and 10,000 kg/m3). The Stokes number used
is based on the integral time scale (see Table 1) and is
defined as:

St = ρPad
2
Pa

18ρυτint
(10)

With a fluid density of 1000 kg/m3, four particle
Stokes numbers, i.e. 1, 2, 4, and 40, are obtained.

All the simulations were run over more than 250,000
time steps to guaranty a reliable statistical averaging.
For analysing the particle behaviour, first the distribu-
tion functions of normalised forces, torques, linear ve-
locities and angular velocities are considered. They are
more or less Gaussian distributed, as particle motion is
induced by the Gaussian fluid turbulence. The frequency
distributions of the forces and moments acting on the
particle strongly depend on the length to diameter ra-
tio. For a small Stokes number particles with l/d = 4,
the frequency distribution of the radial force and mo-
ment are wider than those in the axial direction (Fig.
4). The radial and axial directions are determined for a
coordinate system fixed to the major axes of the parti-
cle. This behaviour is a consequence of the fact that the
projected area of the particle in the radial direction is
considerable larger than in axial direction whereby the
particle views a larger spectrum of fluid fluctuations in
the radial direction. This yields much broader frequency
distributions for the radial components, where the mo-
mentum acting on the particle is more sensitive to this
effect (Fig. 4). For an axis ratio of l/d = 1 (not shown
here) the frequency distributions of the axial and radial
forces are almost identical for all Stokes numbers. How-
ever, the radial momentum distributions are nevertheless
remarkably wider than the axial ones.
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Figure 4: Frequency distributions of the radial and axial
forces (a) and moments (b) for a cylindrical particle with
St = 1 and l/d =4.

Figure 5: Frequency distributions of the radial and ax-
ial linear (a) and angular (b) velocities for a cylindrical
particle with St = 1 and l/d =4.

As inertial particles need some time to respond to the
force and moment actions, their velocities (linear and
angular) are changing with some delay and exhibit less
fluctuations than the forces and moments (filtering ef-
fect). Hence, the particle velocity histories (see Fig. 6)
and the shape of the velocity distributions depend addi-
tionally on the response behaviour of the particles, i.e.
the particle Stokes number. The resulting frequency dis-
tributions for the cylindrical particle with St = 1 and
l/d = 4 are almost identical for the linear velocity com-
ponents (Fig. 5a), since these particles follow the fluid
fluctuations reasonably well. The angular velocity com-
ponents are however still slightly anisotropic similar to
the moments. Here the angular velocity around the axial
main axis of the cylinder is slightly narrower distributed
than the angular velocity around one of the radial direc-
tions. Similar observations are made for the cylindrical
particles with larger Stokes numbers, but the linear and
angular velocity distributions are narrower as they are
not able to follow the fluid fluctuations completely.

Figure 6: Temporal evolution of particle linear velocities
over 50,000 time steps: a) radial velocity for St = 1 and
l/d = 4, b) axial velocity for St = 1 and l/d = 4, c)
radial and axial velocities for St = 40 and l/d = 4.

14 ERCOFTAC Bulletin 82



The particle behaviour may be also visualised by look-
ing at the temporal history of the particle velocities (Fig.
6). For the small Stokes number particle (St = 1, l/d =
4) the fluctuations of the axial and radial velocity com-
ponents are much stronger and more noisy then those
for the large Stokes number particle (St = 40, l/d =
4). Although the small Stokes number particle is quite
long, the axial velocity component is very similar to the
radial one (Fig. 6a and b). The corresponding axial ve-
locity component of the long heavy cylindrical particle
shows clearly less noise than its radial component, but
the large-scale fluctuations are almost identical (Fig. 6c).
This is again caused by the larger projected area of the
particle in the radial direction, whereby it views a wider
spectrum of fluid fluctuations.

The interrelation between forces and linear particle
velocities is illustrated in Fig. 7 based on scattering
diagrams for the correlation between radial and axial
components of forces and velocities. The forces (i.e.
Frad = f(Fax)) are randomly distributed around zero for
l/d = 1 forming an almost symmetric three-dimensional
normal distribution for all Stokes numbers (only shown
for St = 1 in Fig.7). For the particles with l/d = 4, the
distribution of the forces is squeezed with the scatter of
the radial component being larger than that of the axial
one as already indicated by the frequency distributions
(Fig. 4). The correlations between the radial and axial
velocity components are not random, but exhibit a con-
tinuous behaviour for all Stokes number particles. The
shape of these orbits depends on the particle response
behaviour, i.e. the Stokes number. For small values of
St the velocities are almost symmetrically distributed
around zero in a range of -0.06 to 0.06 (Fig. 7) and do
not show any specific tendency to respond to the differ-
ent scales of turbulence. Large Stokes number particles
are not able to follow the fluid fluctuations completely
and have much lower velocities (i.e. ±0.02). Their orbits
show some large-scale structure coming from the reaction
on the most energetic turbulent eddies. The small am-
plitude variations of the particle velocities are due to the
interaction of small eddies with the particle. Again these
variations are larger in the radial direction than in the
axial one for elongated cylinders.

In a second step, the influence of the axis ratio and the
Stokes number on the particle response to the turbulent
fluctuations was analysed by sampling their velocity over
the entire computational time. Since the fluctuations
of the particles may be anisotropic the considered rms
values are the averages of all three components. The
relative particle rms values (i.e. relative to the fluid rms
velocities) of the linear and angular velocity at St = 1 , 2,
4 and 40 are plotted over l/d in Fig. 8 and 9, respectively.
Naturally the relative particle rms values of the linear
and angular velocity decrease with increasing St. Fig.
10 shows this behaviour more clearly for particles with
l/d=1. It is obvious, that the relative rms of the linear
velocity decreases much stronger than that of the angular
velocity with increasing Stokes number.

Fig. 8 shows that the particle rms velocity clearly
decreases with increasing l/d. This trend is somewhat
stronger for lower St. In contrast, the particle rms an-
gular velocity (Fig. 9) first increases with l/d, reaches a
maximum at about l/d = 2.0 and then decreases again.
This behaviour is observed mainly for the smaller Stokes
numbers. At the highest Stokes number considered (i.e.
St = 40), the relative rms angular velocity is almost in-
dependent of l/d.

Figure 7: Correlations between radial and axial compo-
nents of particle forces and velocities; upper two graphs:
St=1 and l/d=1; lower two graphs: St=40 and l/d=4.
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Figure 8: Relative rms linear velocity of a cylindrical
particle as a function of the axis ratio at St = 1, 2, 4,
and 40.

Figure 9: Relative rms angular velocity of a cylindrical
particle as a function of the axis ratio at St = 1, 2, 4,
and 40.

Figure 10: Relative rms velocity and angular velocity of
cylindrical particles with l/d = 1 as a function of the
Stokes number.

Conclusions
The rms velocity of elongated cylindrical particles de-
creases with increasing axis ratio, all particles having the
same volume. This is due to the averaging of the tur-
bulent fluid fluctuations over the particle surface which
increases with increasing axis ratio. Thus, it can be con-
cluded that the best dispersion of particles suspended in
a turbulent flow is achieved for spherical particles, since
they have the smallest surface area per volume. In con-
trast, the particle rms angular velocity first increases to
a maximum at about l/d = 2.0 and then decreases. This
is probably caused by the additional effect of the change
of the moment of inertia with l/d. The value of the mo-
ment of inertia around the longitudinal axis decreases
and around the radial axis increases with increasing l/d,
which would lead to higher and lower rms angular veloc-
ities, respectively.
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Abstract

This paper describes a novel implicit immersed bound-
arymethod (IBM) implementation for simulating the detailed
flow around arbitrary moving bodies. An implicit immersed
boundary method (Mark and van Wachem (2008)) uses a non-
boundary conforming grid in the whole domain, to enable
efficient solution of the flow equations, and a Lagrangian
representation of the boundary of an arbitrary particle (the
immersed boundary) to determine the behaviour of the par-
ticle. The boundary of the particle is triangulated and at
the intersections of the triangles with the grid, so-called im-
mersed boundary conditions are applied. The implicit im-
mersed boundary condition used in this work, mirrors the
velocity field along the normal of the local triangulated im-
mersed boundary (IB) segments such that the fluid exactly
follows the IB. As a result, a fictitious velocity field inside the
immersed boundary is developed, which is excluded from the
discretized Navier-Stokes equations to preserve mass. The
numerical method is based on a finite volume approach on
a collocated variable arrangement with a fully coupled pres-
surevelocity solver.

The validation of the method presented in this paper is de-
termining the lift force of a rotating sphere in a low Reynolds
number flow. Due to the rotation, a lift force develops called
the Magnus effect, see Rubinow and Keller (1961). In the
simulations, the Reynolds number, the diameter of the sphere,
and the mesh spacing are varied to show the method has a sec-
ond order accurate prediction of the drag and lift force on the
sphere.

Introduction

Multiphase flow problems occur in a wide range of industrial
processes as well as in many natural environments. Multi-
phase flow is most often characterized by a range of different
length scales which results in difficulty in understanding such
flow problems, both from a physical as well as from a nu-
merical point of view. Although still very much under devel-
opment for multiphase flows, computational fluid dynamics
(CFD) has been shown to be a valuable research tool in the
multiphase flow area. CFD can be used to gain insight of
flow phenomena at large scales, but can also be used as an
accurate tool to study phenomena at the scales of individual
particles. Currently, multiphase CFD at the large scale relies
heavily on closure models, often empirically determined, and
is far from mature. A thorough understanding of the physical
phenomena at the particle scale is required to understand and
control the global process, leading to new insights and clo-
sure models which can be employed to develop and validate
closure models applicable at the large scales. This paper fo-
cusses on deriving models to accurately describe and predict
the flow at the scale up to that of a few particles. This requires
a framework to capture the flow around a number of complex

interfaces.
There are different approaches that can deal with the flow

around moving complex geometries, probably the first and
most well-know is the Arbitrary Lagrange-Euler (ALE) for-
mulation, originally presented by Hirt et al. (1974). In Hu
(1996); Hu et al. (2001) an ALE method is derived and vali-
dated to accurately predict the behaviour of two-dimensional
fluid-solid flows. The method employs a Galerkin finite el-
ement method based on a moving unstructured mesh. The
method works well and is stable for relatively high Reynold’s
numbers, but the regeneration of the mesh is computationally
very expensive. Moreover, the necessity of projecting the so-
lution from one grid to another may lead to loss of accuracy.
To avoid the re-meshing, three new non-boundary conforming
methods have been developed: Cartesian, (e.g. Noh (1964);
Kirkpatrick et al. (2003)) Lagrange multiplier, (e.g. Glowin-
ski et al. (2001, 1994)) and the immersed boundarymethod,
(e.g. Peskin (1977); Lai and Peskin (2000); Goldstein et al.
(1993); Silva et al. (2003); Oliveira et al. (2005); Mark and
van Wachem (2008)). This paper will focus on the immersed
boundary method (IBM).

The immersed boundary methods have been pioneered by
Hirt et al. (1974) and Peskin (1977), and are capable of sim-
ulating the flow around a body using a mesh which does not
conform to the geometry of the body. With this methodology,
it is in principle possible to determine the flow around an arbi-
trary geometry while employing a simple discretisation grid.
The mesh used to represent the immersed body is independent
of the fluid grid, which allow the body to displace relative to
the fixed grid used to discretize the fluid equations. The IBM
becomes an efficient alternative to the classical body-fitted/re-
meshingmethods to handle moving boundaries problems. The
immersed boundary method has been successfully applied in
many fields.

The Implicit Method: MIBM

A new method called mirroring immersed boundary method
(MIBM) recently published by Mark and vanWachem (2008)
was implemented in a fully coupled framework. This method
imposes effect of the immersed body on the flow by directly
modifying the Navier-Stokes coefficients obtained from the
discretization process, which includes the desirable boundary
condition at the first time-step iteration; there are no outer
iterations required.

In the MIBM method the interface, Γ, is used to map the
fluid mesh defining a three subsets of points (see Figure 1):
�xi points inside the interface, �xiib points inside and near the
IB interface and �xe points outside the interface.

The method directly mirrors the external velocity over the
interface Γ. The internal immersed-boundary velocities, �u iib,
are set in the opposite direction of the exterior normal veloc-
ities, �ue, plus the immersed-boundary velocity, �u ib, such that
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the velocity constraint is enforced at the interface Γ:

�uiib + �ue = 2 �uib. (1)

Figure 1: Mapping of the cell centered fluid cells, MIBM
method.

Figure 2: A 2D representation of the MIBM method, the exte-
rior normal point �pe with its surrounding interpolation points.

This is done by setting a fictitious exterior normal point, as
depicted in Figure 2. The mirror point is defined as the �x iib
mirrored along the normal of its closest interface point. Hence
the smallest distance between the interface and the fictitious
point �xe are the same.

�xe = �xiib + 2d�n (2)

If the exterior normal point coincides with a discrete ve-
locity point, the application of the Dirichlet condition is triv-
ial. More generally, the exterior normal point lies between
the discrete velocity points and therefore the velocity needs
to be implicitly interpolated using the surround points. The
IIB velocity can then be set to the reversed interpolated ve-
locity plus the boundary velocity. The interior velocities are
set to the boundary (IB) velocity.

Interpolation of various variables in the three dimensional
discretized spaces is frequently required. In this working an
inverted weighted interpolation is used. The inverse distance
weighted methods are based on the assumption that the in-
terpolating points should be influenced most by the nearby
points and less by the more distant points. Several options are

available for inverse distance weighted interpolation; the sim-
plest form is referred to as Shepard’s method. The equation
used is as follows:

wi = h−2
i

n∑

j=1
h−2
i

(3)

where hi is the distance from the scatter point to the interpo-
lation point.

The inverse weighted distance is forced to have a minimum
number of the data points, however the choice of the maxi-
mum number of data points is arbitrary. In this work a fixed
amount of eight points (n = 8), that define an interpolation
box surround the interpolation point, is employed.

Calculation of the Forces

The total force on the immersed object consists of two contri-
butions, i.e. the pressure force and the viscous force. These
forces are integrated over the interface Γ.

Fi =
∫

Γ
(−pδij + τij)nj dS (4)

In order to proceed with the numerical calculation of the
forces acting at the body, the interface Γ must be discretized.
In our work, we have used a triangulation process to discretize
the immersed boundary. The contribution of each individual
triangle of the triangulated immersed boundary is determined
and summed up to get the total surface force acting on the
body. In order to discretize the force terms, auxilary points
are introduced, as is shown in Figures 3 and 4.

Figure 3: Triangle k in the triangulation of the immersed-
boundary interface Γ with the exterior points, �p ′ and �p′′.

Figure 4: Triangle k with the projection of �pp onto the coor-
dinate axises (�px,�py ,�pz).
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The evaluation of the pressure force is done with the help
of two auxiliary points �p′ and �p′′ which lie on the normal of
the triangle. The pressure is interpolated onto the auxiliary
points and then extrapolated onto the centre of the triangle,

Pc = 2P ′′ − P ′ (5)

To evaluate the viscous part, the tensor τij is needed at the
center of each triangle. This is done by introducing three new
points, �px

′, �py
′ and �pz

′ which are the projections of auxil-
iary point �p′ onto the Cartesian axes. The fluid velocities are
interpolated onto these points.

Fully Implicit Solving of Flow Equations

The flow outside of the immersed objects is modeled by the
Navier-Stokes equations. The continuity equation, equation
6, and the momentum equation, equation 7, for viscous and
incompressible flows can be written as:

∂ui

∂xi
= 0, (6)

ρ
∂uj

∂t
+ ρ ∂
∂xi
(
uiuj
)

= − ∂p
∂xj

+ ∂τij
∂xi
−Ruj − Sj , (7)

where source terms are given by S j , which is a general source
term and a linearized source term R. The τij represents the
stress tensor:

τij = μ
(
∂ui

∂xj
+ ∂u

j

∂xi

)
. (8)

The cell centered finite volume discretization at P of the
velocity terms for one direction of the equation 7, is of the
form:

[
ρVP
Δt + a(uj)

P + VP R(uj)
P

]
ujP =

[
∑

nb

a
(uj)
nb u

j
nb

]

P

−VP
[
∑

nb

b
(j)
nb Pnb + Su

j

]

+
[
ρVP
Δt

]

P

uj,OP ,

where a is a coefficients that combines the convective and
shear terms, and b is obtained from the discretization of the
pressure gradient.

Discretization of the Continuity Equation

Considering the single phase flow continuity equation, equa-
tion 6, in its discretized form

∑

f=faces

Mf =
∑

f=faces

uifs
i
f = 0 (9)

The coefficients for the continuity equation are determined
by the momentum weighted interpolation. The objective is to
obtain an expression for the face velocity u if from the aver-
aged momentum equations. The net force driving the flow in
equation 9 is given by, and now is redefined as

∂̃p

∂xj
=
[
∂p

∂xj
+ Su

j

]
(10)

It is important to treat the pressure gradient and the sources
similar, as their sum is the contribution to accelerating the
fluid. With this, equation 11 becomes

[

1 + ρΔt
VP

a
(uj)
P + VP R(uj)

P

]

ujP =

[∑
nb a

(uj)
nb u

j
nb

]

P

a
(uj)
P + VP R(uj)

P

−VP

[
∂̃p

∂xj

]

P

a
(uj)
P + VP R(uj)

P

+
[ ρ

Δt

]

P

VP

a
(uj)
P + VP R(uj)

P

uj,OP

(11)

After which a number of abbreviations are introduced,

c = ρ

Δt (12)

d(u
j) = VP

a
(uj)
P + VP R(uj)

P

(13)

ũj =

⎧
⎨

⎩

[∑
nb a

(uj)
nb u

j
nb

]

P

a
(uj)
P + VP R(uj)

P

⎫
⎬

⎭
(14)

With this discretization stencil, an equation for the velocity at
all nodal points can be expressed. To proceed with discretiza-
tion of the continuity equation, the values of the velocities are
required at cell faces or integration points. In our approach,
a weighted, analogous equation can be written down for the
velocity at the cell faces,

[
1 + ce′ d(u

j)
e′

]
uje′ = ũje′ − d(u

j)
e′

[
∂̃p

∂xj

]

e′

+ ce′ d(u
j)
e′ u

j,O
e′ (15)

The point e′ lies in the center of the line connecting the nodes
P and E, therefore the weighting coefficient will be exactly
1
2 . An expression for the velocity ũje′ is obtained by linear
interpolation using the velocity expressions for points E and
P .

ũje′ = 1
2

(
ũjP + ũjE

)
(16)

The expression for ũje′ , can be substituted in equation 15.
This equation can then directly be used to close the discretized
continuity equation outside of the region occupied by the im-
mersed boundary. At the immersed boundary, the interpo-
lation coefficients from the MIBM are employed to find the
velocity. This approach leads to a fully coupled system in the
form of

⎛

⎜
⎝

... ... ... ...

... ... ... ...

... ... ... ...

... ... ... ...

⎞

⎟
⎠

⎛

⎜
⎝

u1
u2
u3
p

⎞

⎟
⎠ =

⎛

⎜
⎝

RHu1
RHu2
RHu3
RHp

⎞

⎟
⎠ (17)

which can be solved iteratively.

Results and Discussion

To validate the method, simulations of an isolated rotating
sphere in a uniform crossflow are performed for different ro-
tation velocities, fluid velocities, and mesh resolution. The
computational domain is a unitary cube, with an inflow con-
dition on one side, an outflow condition on the other side, and
a mirroring boundary condition on all walls. The sphere in all
simulations has 1280 trigangles. The sphere center is placed
at the center of computational domain and it has a diameter
between D = 0.1m and D = 0.25m. The timestep in the
simulation is taken to correspond with a CFL number of 0.99.
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However, for the steady-state solution which exists for these
low Re number cases, the size of the timestep did not matter.

The lift force develops due to the rotation of the sphere,
and is show in figure 5. This lift force is caused by the Mag-
nus effect. The sphere rotation produce an asymmetry in the
velocity field causing a pressure differential between the two
sides of the sphere.

Figure 5: Magnus force (lift) due to sphere rotation.
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Figure 6: The prediction of the lift coefficient for ReD = 0.5
as a function of the number of cells in each direction. The
top line indicates the theoretical prediction of Rubinow and
Keller (1961).

The rotational speed of the sphere is usually represented
by a ratio of the tangential velocity of the sphere to the fluid
stream velocity

γ = dω

2U∞
(18)

A theoretical solution for ReD < 1 has been developed by
Rubinow and Keller (1961) and shows that the lift force, for
a rotating sphere, can be expressed in terms of the rotational
speed (γ),

Cl = 2γ (19)

The lift force coefficient calculated numerically is given by

Cl = 2fl
ρfμAU2∞

(20)

Figure 6 shows the predicted lift coefficient of the mesh re-
finement study performed for the rotating sphere. The coars-
est mesh consisted out of 203 cells in each direction, and the
finest mesh out of 1003 cells. The line corresponds with the
Rubinow and Keller theory. The figure shows that the drag
improves quickly as the mesh is refined. A curve fit shows
the convergence behaviour with respect to mesh spacing is
second order.

In figure 7, the symbols show the prediction of the lift co-
efficient for various sphere diameters and the line shows the
prediction given by equation 20. In these simulations, the
flow velocity at the inlet was kept constant and the size of
the domain scaled with the diameter of the sphere. The num-
ber of discretisation points in each direction is 60, leading to
216,000 mesh cells.
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Figure 7: The prediction of the lift coefficient with a fixed
inlet velocity for various sizes of spheres (symbols) compared
to the theoretical prediction of Rubinow and Keller (1961) as
depicted by the line.

Figure 8: Comparison between theoretical and simulated re-
sults for Cl at ReD = 0.5.

Figure 8 shows a comparison between lift coefficients pre-
dicted by numerical simulation using the MIBM method, for
ReD = 0.5 and the theoretical data. These predictions
agree well with theory. This confirms a good accuracy of
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the method to impose a desirable boundary condition at the
interface.

The flow pattern is shown in Figure 9. From this figure,
the appropriately achieved no-slip boundary condition on the
surface of the sphere can be clearly seen. The velocity of the
fluid near the sphere is gradually modified by the influence of
the rotation of the sphere, producing a strong flow asymmetry.

Figure 9: Representations of the flow around the rotating
sphere with ReD = 0.5.

Computational Performance

The implementation of the IB methods implies an extra com-
putational cost to perform all interpolation procedures and
setup the appropriated IB coefficients. The impact of this
implementation depends, of course, of the refinement of the
triangulation in the interface. Considering a fluid grid of
40×40×40 at Reynolds 1, the extra cost to insert a immersed
sphere with 1280 triangles is about 13%, including the calcu-
lation of the forces in each time step. The cost only due to
setting the IB coefficients is less than 4% for this simulation.

Conclusions

This paper describes the derivation, implementation and val-
idation of a transient immersed boundary method imple-
mented in a fully coupled framework; i.e. each time-step ad-
vancement requires inverting only one matrix. The method
is validated with the theoretical findings of a rotating sphere
in a fluid, described by Rubinow and Keller (1961), and the
results show the method is accurate already for a relatively
course mesh. The next steps will be to perform multiple mov-
ing particles a moderate Reynolds numbers.
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Modelling Hierarchies in Dispersed Multiphase Flows
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1 Introduction
A major challenge in the area of dispersed multiphase
flows is to be able to describe the entire flow field gener-
ated by collections of large number of discrete elements
(droplets, particles, bubbles) moving relative to an in-
cident flow. There are various degrees of representa-
tion from fully resolved to point-particle representation,
through to distributed drag formulations. In this paper
we consider the problem of flow past a fixed array of
bodies in a uniform unbounded flow. The aim is to de-
velop a rational criterion for deciding when each of these
modelling approaches can be applied. The theory and
discussion we introduce is valid for both two and three-
dimensional flows. The comparison we make is quite a
severe as it involves inertially dominated planar flow past
a group of cylinders, where the flow interaction is much
stronger than for instance, sphere, and where recent fully
numerical results enable us to examine these questions
in much more detail.

2 Hierarchy of mathematical models
ConsiderNC rigid bodies (diameterD) within a localised
region VG (diameter DG) held in an incident flow U
(figure 1(a)). In this section we define the different
modelling approaches which are used. The Reynolds
numbers based on the group and individual bodies are
ReG = DGU/ν, Re = DU/ν, respectively.

Figure 1: Schematic of the three modelling approaches:
(a) fully resolved, (b) point-particle representation and
(c) distributed drag approach.

2.1 Fully resolved calculations
The fully resolved calculation of the flow u past a group
of bodies involves solving

ρ
Du
Dt

= −∇p+∇ · τ , (1)

over the whole domain where p is pressure and τ is
the stress-tensor. The boundary conditions applied are
u · n̂ = 0, u × n̂ = 0, on each of the surfaces Si
(i = 1, ..., NC). The kinematic and no-slip boundary
conditions each play different roles in the impact of a

body on the ambient flow, with the kinematic leading to
a localised blocking while the no-slip generates the vor-
ticity at the surface which is advected downstream. The
force on the i-th body located at xi is

Fi =
∫

Si

(pI − τ ) · n̂dS. (2)

2.2 Point-particle description
The point-particle description has been applied exten-
sively in computational studies of dispersed multiphase
flows (see Prosperetti & Tryggvason 2007, Chp 9) - see
figure 1(b). The reduced set of equations are

ρ
Du
Dt

= −∇p+∇ · τ −
NC∑

i=1
FiS(x,xi). (3)

The source function S satisfies
∫ SdV = 1 and can take

a number of forms depending on the particle diameter
compared to the grid size h. For D � h, it is usual to
assume

S(x,xi) = δ(x− xi). (4)

Computationally, it is difficult to treat delta-functions
and an alternative (to cope with finite sized bodies) when
the bodies are larger than the element size (eg d ≥ h) is
to use a Gaussian source function, such as

S(x,xi) = 1
(2πl2)n/2

exp
(
−|x− xi|

2

2l2

)
, (5)

where n = 2,3 for two- and three-dimensional problems
and the source size l is taken to be slightly larger than
the particle. For D � h and NC → ∞, while φ is held
constant, it is usual to computationally smear out the
forces and weight them according to distance from the
nearest node. For d � h, the contribution is weighted
by integrating over each element. The major challenge
is in the choice of the force closure Fi which depends on
the local velocity field relative to the particles and the
local velocity gradient tensor (∇u).

Going from the full solution to the reduced model re-
quires replacing particles by a point forces which can be
made to have both the same drag and the same down-
stream wake signature. Closures and estimates of the
unperturbed flow are usually discussed in terms of sub-
tracting the Stokes flow perturbation from the flow local
to the particle or spatially averaging the flow in the vicin-
ity of the particle. The most successful application of the
point-particle approach is in the limit of Re < 10, for
three-dimensional flows (Maxey & Patel 2001). In this
limit, diffusive effects are strong and locally the flow is
dominated by Stokeslet and dipole contributions. Stokes
flow descriptions are valid within a distance O(D/Re)
from the body, beyond which the flow is dominated by
a source term. Bevilaqua & Lykoudis (1978) contrasted
the wake of a rigid and porous sphere (with the same
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drag force), show that it is turbulent wake intensity dis-
tribution depends on factors other than just drag.

Previous attempts to replace bodies by point forces
have tended to focus on the low Reynolds numbers based
on the slip velocity. Here we attempt to extend this ap-
proach to the case of inertially dominated flows (Re� 1)
and develop a first order analysis of the global effect of a
group of bodies on the ambient mean flow. The effect of a
point force on a uniform flow is well-known (eg Batchelor
1967, Bretherton 1962). In three-dimensional flows, the
velocity deficit decays sufficiently fast (far downstream)
that the momentum equation can be linearised (since
|u − U x̂1|/U � 1). We consider the dominant effect of
drag on the steady flow which generates a flow distribu-
tion estimated to be

u = U x̂1+
NC∑

i=1
Qi∇ΦS(x−xi)+μi

∂

∂x1
∇ΦS(x−xi) (6)

−(1, 0)H(x−xi) QiU

4πν(x1 − x1i)
exp
(−Ri(x2, x3)2U

4ν(x1 − x1i)

)
x̂1,

where Ri(x2, x3) =
√

(x2 − x2i)2 + (x3 − x3i)2. For
two-dimensional laminar flows, the downstream velocity
and vorticity fields are

u = U x̂1 +
NC∑

i=1

Qi∇ΦS(x− xi) + μi
∂

∂x1
∇ΦS(x− xi) (7)

+(1, 0)H(x − xi) Qi√
2πν(x1 − x1i)/U

exp

(
−(x2 − x2i)2U

4ν(x1 − x1i)

)
x̂1.

The effect of multiple bodies can then be estimate
to leading order by summing up the contributions from
each body. The vorticity maximum behind an isolated
body decreases as x−1 and x−3/2 for two- and three-
dimensional laminar flows. This is a faster decay of the
maximum concentration of a passively diffusing material
(as x−1/2, x−1 respectively) because of vorticity annihi-
lation. For planar flows, the presence of von Karman vor-
tex streets means that positive and negative vorticity are
well separated (until a distance ∼ DRe orDGReG down-
stream) so that the decay is much slower. For collections
of bodies, vorticity annihilation is caused by wakes inter-
mingling which leads to an exponential decrease of the
velocity deficit (White & Nepf 2005) over a distance lD =
(l2sep−D2/4)uE/2ν ∼ dReLπ/8(1/φ−1) for planar lam-
inar wakes and lD = l2sepuE/2ν ∼ dReLπ/12(1/φ2/3− 1)
for three-dimensional wakes, where uE is a measure of
the average flow in the vicinity of the bodies. (For
turbulent wakes, ν is placed by a nominal turbulent
viscosity). As φ increases, the local Reynolds number
ReL = DuE/ν, defined in terms of the Eulerian average
velocity within the array, decreases because the average
flow uE is reduced. When lD/DG is much less than unity
the individual wake signatures are lost and a distributed
model is applicable.

2.3 Distributed drag models
This modelling approach is usually applied when the ge-
ometry and number of the bodies is complex and large,
for instance, in the urban terrain (see figure 1(c)). In
this class of models, the effect of the collection of bodies
is smeared over the flow, through

ρ
Du
Dt

= −∇p+∇ · τ − 〈F (x, t)〉. (8)

For most inertially dominated flows, the applied drag
force is assumed to take the form

〈F 〉 = 2ρCDu|u|
πDG

S(x), (9)

where S(x) = 1 for x ∈ VB , and 0 otherwise and CD is
a closure drag coefficient (eg. see Belcher et al. 2003).
The total force on the array is FT =

∫
VG
FdV . Looking

again at the vorticity field, we see

ρ
Dω
Dt = ρω ·∇u−∇× 〈F 〉. (10)

Providing, |〈F 〉|/||∇〈F 〉||DG � 1, vorticity is largely
generated at the leading edge and sides of the region VB .
This type of modelling approach predicts large shear lay-
ers at the edge of the array. Since the positive and neg-
ative vorticity are well separated in the near field, the
maximum vorticity decays slowly as x−1/2 in both 2D
and 3D until the flow becomes unstable. In the near
wake region, the streamwise velocity field has a top hat
profile and the maximum velocity deficit decays slowly
with distance.

3 Model evaluation and comparison
We illustrate the three modelling approaches described
above in the context of the two-dimensional flow past a
localised group of bodies and draw on the recent high-
resolution calculations of Nicolle (2009). In this work,
an array of circular cylinders of diameter D = 1 is or-
ganised in concentric circles forming a circular group of
diameter DG = 21. The cylinders forming the group are
equally spaced from one another. The number of cylin-
ders in each group is varied from NC = 7 to 133 which
results in a void fraction from φ = 0.0023 to 0.3016. The
Reynolds numbers of these simulations are Re = 100 and
ReG = 2100. The point-particle and distributed drag
model uses the same flow and geometric characteristics
as well as applying the point particles at the same cylin-
der positions as used for the full numerical calculations.
Figure 2(a) shows the resolved flow past a group of 95
cylinders.

Three distinct regimes were identified as the solid
fraction was increased. For φ < 0.045, the cylinders were
well separated and the vortices shed from each cylinder
could be identified. For 0.045 < φ < 0.145, the flow in-
side the array was steady and a distinct shear layer was
generated at the edge of the array. Beyond φ > 0.145,
the wake was attached to the array and the flow behaved
in a similar fashion to a rigid cylinder.

To compare the full calculations against a point-
particle model, we apply closure expressions for drag
forces based on estimating the local velocity when the
i-th cylinder is removed. The drag force closure expres-
sion applied to each body cylinder (Clift & Weber 1978)

CDi =

⎧
⎨

⎩

9.689Re−0.78(1 + 0.147Re0.82) Rei < 5,
9.689Re−0.78(1 + 0.227Re0.55) 5 < Rei ≤ 40

9.689Re−0.78(1 + 0.083Re0.82) Rei > 40

The local Reynolds number, Rei = D|u|/ν is obtained
from the velocity at the center of cylinder i which is re-
moved from the flow. A number of iterations where ap-
plied to ensure convergence. A comparison of the mean
(time-averaged) drag coefficient on the cylinders (in fig-
ure 2) calculated from the inertially dominated point-
particle model and the full numerical results, are shown
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NC 1 7 20 39 64 95 133
φ 0.0023 0.0159 0.0454 0.0884 0.1451 0.2154 0.3016

Predicted 〈CD〉 0.0592 0.3435 0.8324 1.3691 1.6926 1.9271 2.1496
Numerical calculations 0.0619 0.3707 0.8155 0.9694 1.1063 1.6460 1.7678

Percentage error 4.3 7.3 2.1 41.2 53.0 17.1 21.6

Table 1: Comparison between numerically calculated and predicted array drag as a function of solid fraction φ.

in Table 1. The agreement between the numerical cal-
culations and point-particle model is good up to about
φ ∼ 0.1− 0.15.

(a)

(b)

Figure 2: Numerical results at ReG = 2100 for (a)
fully resolved flow past 95 cylinders in a circular grouped
where φ = 0.2154, and (b) for a circular region of dis-
tributed drag which a similar total drag to (a) (using (9)
with CD = 1.6).

At low solid fractions the bodies are too close for the
point-particle model to be practically applied (largely
because |u|/D||∇u||E ∼ O(1)). Beyond this range,
lsep/D ∼ O(1) and the individual flow signature from
individual bodies is annihilated. In this regime and at
high solid fractions, distributed drag models should be
applied as they are capable of reproducing the attached
shear layers (described previously). Figure 2(b) shows
the results from a distributed drag model calculation.
The leading coefficient 2CD/πDG was chosen to be 0.043
(based on CD = 1.6. The field wake structure is simi-
lar to the fully resolved calculations, but the near field
structure is different.

4 Conclusion
We have compared and contrasted the three main mod-
elling approaches which can be applied to dispersed mul-

tiphase flows: fully resolved, point-particle models and
distributed drag formulation in the limit of Re� 1.

We have extended the point particle approach to the
case of Re� 1 and two- and three-dimensional groups of
bodies. The comparison between the forces on a group of
cylinders predicted from the point-particle and the full
numerical calculations is quite good until φ ∼ 0.06 when
the spacing between the bodies is comparable to their
diameter.

The point-particle approach shows that as φ in-
creases, the lengthscale over which the wake signature
is annihilated becomes comparable to the size of the ar-
ray. In this case, individual flow signatures are annihi-
lated and a distributed drag model is more appropriated.
This gives support to the point-particle approach gener-
ally applied within the turbulence literature.

When individual wakes are annihilated and it is
then appropriate to apply a distributed drag model. In
such flows, the deflection of the mean flow means that∫
FiSdV is less than the drag on the body. The inher-

ent problem of the distributed drag model is that the
usual force closures are no longer appropriate and may
necessitate the use of drag coefficients which many seem
unphysical (ie > 1). One future direction, largely un-
explored, is the development of a rational basis for the
force closures applied to distributed drag models.
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Abstract

In this paper we evaluate the use of the point-particle
approach in direct numerical simulations (DNS) of
suspended sediment transport with a dilute particle-
concentration. We perform a comparison between the
simulations and PIV/PTV experiments in a horizontal
open water channel flow, with a dilute concentration
of small spherical particles (diameter of the same order
of the Kolmogorov length-scale) with a density slightly
larger than the density of the fluid. Overall, the results
indicate that, provided a resuspension mechanism at the
bottom wall is included, point-particle direct numerical
simulations give accurate results. The results show that
the inclusion of a resuspension mechanism is crucial;
however, the details of it are not important, provided
that it is strong enough to promote an adequate resus-
pension of the particles. For the dilute concentration
considered here, the key resuspension mechanisms are
associated with the lift force near the wall, which can be
easily incorporated within the point-particle formalism
using standard lift-force models. Alternatively, a sim-
ple ad-hoc resuspension model, using a virtual particle-
bouncing wall, also gives good results.

1 Introduction

The transport of suspended sediment in wall-bounded
turbulent flows is important in numerous situations. A
common situation involves the transport and sedimenta-
tion of sand-like particles in turbulent water-flows. The
sedimentation of the particles depends strongly on the in-
teraction between the particles and the turbulence, and
there is a lack of good understanding about it. Most
of the work on particle-turbulence interactions has been
done for solid particles in air, with a density ratio be-
tween the particle and the fluid of the order of 1000,
whereas in this case we are interested in a density ratio
of the order of 1.

One of the techniques used to simulate the motion
of particles in a turbulent flow is the point-particle ap-
proach [1, 2]. In the point-particle approach the inter-
action between a particle and the surrounding fluid is
modeled through a force located at the center of the par-
ticle. When doing point-particle DNS, all the scales of
the continuous phase are computed and the level of mod-
eling is kept to a minimum. Therefore, point-particle
DNS is extremely useful in gaining a better understand-
ing of the interactions between the particles and the tur-
bulence. However, in principle, the point-particle ap-
proach requires that the particles be much smaller than
the smallest flow scales, and it is not clear to what ex-
tent the restriction on the particle size can affect the ac-
curacy of the simulations. In many situations involving

sediment transport the particles have a diameter of the
same order of the Kolmogorov length-scale, hence it is
important to know to what extent the restriction on the
particle size can affect the accuracy of the simulations. In
this work, we perform point-particle DNS, and compare
the results with PIV/PTV experiments in a horizontal
open water channel flow. The particles have a diameter
of the same order of the Kolmogorov length-scale, there-
fore, even though they are ‘small’, they are not ‘much
smaller’ than the smallest flow scales. As much as possi-
ble, all the conditions in the simulations and the experi-
ments were exactly the same.

First, the simulations were performed assuming one-
way coupling, with drag, gravity, added mass and the
surrounding fluid stresses acting on the particles. The
comparison between the experiments and the simula-
tions, presented in Cargnelutti et al. [3], showed a good
agreement for the profiles of the particle mean-velocity
in the streamwise direction, and for the profiles of the
particle velocity-fluctuation. However, there was a mis-
match in the profiles of the particle mean-velocity in the
normalwise direction, and in the profiles of the particle-
concentration. The difference between the numerical
and experimental results can be related to a lack of a
re-suspension process in the simulations. In the point-
particle approach, the force acting on a particle is ob-
tained using the fluid-velocity interpolated at the cen-
ter of the particle. Therefore, in the simulations, once
the particle reaches the bottom of the channel, the only
normalwise forces that oppose gravity are due to the ve-
locity fluctuations at a distance of one radius from the
wall, which are very small and cannot resuspend the par-
ticles. The actual resuspension process is due to physical
mechanisms not included in the simulations presented in
Cargnelutti et al. [3]. In order to check the importance
of the different resuspension mechanisms, in this work
the simulations were also performed with: (i) the inclu-
sion of ad-hoc resuspension models, and (ii) the inclusion
of the lift force.

First, we present the equations of motion, the lift force
models and the resuspension mechanisms. Then, we
present the numerical and experimental setups. Finally,
the results for the different resuspension mechanisms are
presented and compared with the experimental data, and
some conclusions are drawn.

2 Equations of motion and resuspension
mechanisms

Considering a one-way coupling situation, where the in-
fluence of the particles on the fluid is neglected, the
equations of motion of the continuous phase are given
by the continuity and Navier-Stokes equations for an in-
compressible flow:
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∇ • �U = 0 (1)

D�U

Dt
= −∇P
ρf

+ ν∇2 �U (2)

where �U is the fluid velocity, P the pressure, ρf the fluid
density, and ν the fluid kinematic viscosity.

The forces acting on a small particle were described by
Maxey and Riley [4]. In addition to the forces considered
by Maxey and Riley, we also include the lift force, and,
following the results of Armenio and Fiorotto [5], we ne-
glected the history (Basset) force. Considering Stokes
drag, gravity, added mass, the particle surrounding fluid
stresses and the lift force, the particle equation of motion
is given by:

d�V
dt = 1

τa

(
�U − �V

)
+ β−1
β+ 1

2
�g

+ 3
2

1
β+ 1

2

D�U
Dt + β

β+ 1
2

�fL
(3)

where dp and ρp are the particle diameter and density, �g
is the acceleration of gravity, β = ρp/ρf is the particle-
fluid density ratio, �fL = 6�FL/ρfπd3p is the lift force per

unit of mass, τa = β+ 1
2
β τp, and the particle relaxation

time τp is given by:

τp = β
d2p

18ν
(4)

The lift force, acting in the direction perpendicular to
the wall, needs to be modeled. In principle, the lift force
can also have components in the streamwise and span-
wise directions, however, their values are much smaller
than the normalwise component, and, following the usual
practice, we model only the lift force in the normal-
wise direction. There exist many models, with different
ranges of validity according to the particle distance from
the wall. Wang et al. [6] formulated an ‘optimal’ lift
force, as a compilation of different models available in
the literature. This ‘optimal’ lift force can be ex-pressed
as:

FL = 6πapμVrf(G, Vr, μ, ρf , �) (5)
where ap is the radius of the particle, μ and ρf are the
viscosity and density of the fluid, Vr is the absolute value
of the streamwise velocity difference between the particle
and the surrounding fluid, G is the wall-normal gradient
of the streamwise velocity of the fluid at the position
of the center of the particle, and � is the distance be-
tween the particle center and the wall. The function
f(G, Vr, μ, ρf , �) depends on the lift model used, and the
details can be found in Wang et al. [6]. The model pro-
posed by Wang et al. [6] does not consider the case when
the particles are in contact with the wall. Leighton and
Acrivos [7] gave a model for the lift force acting on a
particle at rest, in contact with a wall, in the presence of
a shear flow:

FL = 9.22ρfa4
pG

2 (6)

Krishnan and Leighton [8] extended this model for the
cases when the particle is still in contact with the wall
but no longer at rest (the corrected formulation can be
found in King and Leighton [9]); neglecting the particle
rotation, the lift force is given by:

FL = 9.257ρfa4
pG

2 + 1.755ρfa2
pV

2
p

−9.044ρfa3
pVpG

(7)

where Vp is the streamwise particle velocity.
Very close to the wall, there is no agreement on which

model to use for the lift force. According to King and
Leighton [9], the model proposed by Wang et al. [6] is
valid when the distance of the center of the particle to
the wall is larger than 1.1ap, and tends asymptotically
to the model of Krishnan and Leighton [8] as the particle
approaches the wall. As we will see below, the choice of
the lift-force model when the distance from the particle
center to the wall is between ap and 1.1ap can affect the
results.

Inter-particle collisions can also produce particle en-
trainment into suspension. A collision algorithm can be
very time consuming and an alternative, often used in
‘engineering simulations’, is to use a resuspension model.
One important feature of the inter-particle collision pro-
cess, besides the energy and momentum transfer, is the
fact that two particles cannot occupy the same space
at the same time. This led us to include a very simple
‘ad-hoc’ resuspension model: a virtual particle-bouncing
wall located at a short distance from the bottom wall.
This mimics in a simple way the bouncing of the parti-
cles on the top of other particles lying at the bottom wall.
We should note, however, that here we are considering a
very dilute particle concentration, where, a priori, inter-
particle collisions are not expected to play a significant
role.

3 Numerical setup
The numerical setup, consisting of a particle-laden open
channel flow driven by a streamwise pressure gradient, is
shown schematically in figure 1. The continuous phase
was solved with a standard finite-volume code on a
staggered grid, using a predictor-corrector solver with
a second-order Adams-Bashforth scheme; the time-step
was obtained using the Courant stability criterion. At
the top wall was imposed a free-slip boundary condition
and at the bottom wall a no-slip boundary condition. Pe-
riodic boundary conditions were used in the streamwise
and spanwise directions.

Figure 1: Numerical setup.

The equations of motion were made dimensionless us-
ing the friction velocity uτ and the height of the channel
h. With these parameters, the Reynolds number was set
toReτ = 500 which corresponds to a bulk Reynolds num-
ber Reb = 10x103. The length of the computational do-
main in the streamwise, spanwise and normalwise direc-
tions was equal to, respectively, L+

x = 2500, L+
y = 1000

and h+ = 500 with, respectively, 256, 192 and 128 grid
points. The grid was uniform in the streamwise and
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spanwise directions, and a hyperbolic-tangent stretch-
ing was used in the normalwise direction (Δz+ ≈ 0.9
at the wall and Δz+ ≈ 7 at the center). The super-
script + is used to denote a value in wall-units (i.e. non-
dimensionalized using uτ and ν).

For the discrete phase, the particle equation of motion
was integrated with an explicit method, using the point-
particle approach, with the fluid velocity at the particle
position given by a tri-linear interpolation. When a par-
ticle left the domain on one side, it was inserted in the
opposite side with the same velocity. At the top and
bottom walls it was used specular reflection for the par-
ticles. When an ad-hoc resuspension model consisting of
a virtual particle-bouncing wall was used, the specular
reflection occurred at a short distance from the bottom
wall, determined by the position of the virtual particle-
bouncing wall. Details of the code can be found in [2].

4 Experimental setup
The experiments were performed in an open channel,
with a channel length of 23.5m, a width of 0.495m, and
a height of 0.5m (figure 2). The walls and bottom were
made of glass in order to have a hydraulically smooth
boundary. The water was pumped from a buffer into the
flume. At the downstream side, the water level was con-
trolled with an adjustable weir, followed by three pipes
allowing the water to return to the buffer. In order to
perform the fluid velocity measurements, the water was
seeded with 10 micron hollow glass spheres.

Figure 2: Experimental setup.

As pseudo-sediment, dp=347 micron (σ=45 micron)
polystyrene particles were used, which had a density ρp
of 1035kg/m3. The value measured for the terminal ve-
locity (vT=2.2mm/s) compared well with the theoretical
estimate of 2.1mm/s (Rep = vT dp/ν = 0.71). The par-
ticles were fed to the channel with a particle feeder, and
the volumetric sediment concentration in the mixing ves-
sel was equal to 1.2x10−2 . The sediment mixture entered
the channel through a nozzle with an inner diameter of
1cm, placed at the channel centerline and with its cen-
ter located at 0.7cm below the free surface. The inflow
velocity was adjusted to match the channel velocity.

The measurement section was located at a distance of
14.25m from the channel entrance. At this location, a
combination of both PIV and PTV was used to measure

the velocities of the polystyrene particles and the fluid.
The data were processed with a modified version of the
method of Kiger and Pan [10] to discriminate between
sediment and tracer particles. Then, a PTV algorithm
was used to calculate the position and velocity of the
tracer particles, whereas the fluid velocity was calculated
from the tracer image with PIV.

A more complete description of the experimental setup
is presented in Breugem and Uijttewaal [11]. All the
results presented here were measured at Reb=10x103,
which was obtained by setting the centerline velocity to
Ucl = 0.2m/s and the water depth to h=0.05m . Four
sets of data were collected, corresponding to different
nozzle positions with respect to the measurement section:
x/h=16, x/h=35, x/h=75 and x/h=160.

4 Results

Three types of one-way coupling simulations were per-
formed: (i) without lift force and without a virtual
particle-bouncing wall, (ii) without lift force and with
a virtual particle-bouncing wall, and (iii) with lift force
and without a virtual particle-bouncing wall.

For the simulations of type (ii), two cases were con-
sidered: (a) resusp1 and (b) resusp2, with the particle-
bouncing virtual wall located one and two particle diam-
eters above the bottom wall, respectively. For the simu-
lations of type (iii), different cases were considered: (a)
l&a, using the model of Leighton and Acrivos [7] (equa-
tion 6) for the lift force when the distance between the
center of the particle and the bottom wall was smaller
or equal to the threshold Ll&a (two values were used:
Ll&a=1.2ap, Ll&a=1.05ap) and without lift force in the
rest of the channel, (b) k&l, using the model of Krish-
nan and Leighton [8] (equation 7) for the lift force when
the distance between the center of the particle and the
bottom wall was smaller or equal to the threshold Lk&l
(three values were used: Lk&l=1.1ap, Lk&l=1.05ap and
Lk&l=1.0ap) and without lift force in the rest of the chan-
nel, and (c) full, using a ‘full lift force’, with the model
of Krishnan and Leighton [8] (equation 7) when the dis-
tance between the center of the particle and the bottom
wall was smaller or equal to the threshold Lfull (four val-
ues were used: Lfull=1.1ap, Lfull=1.05ap, Lfull=1.0ap
and Lfull=0.0) and with the model of Wang et al. [6]
(equation 5) in the rest of the channel.

Obviously, for Lfull=0.0 the model of Wang et al. [6] is
applied over the entire channel. Note also that when the
threshold distance is equal to 1.0ap, in principle, the lift
force is applied only when the particle is exactly touch-
ing the bottom wall, therefore, formally, Lfull=1.0 and
Lfull=0.0 are the same case, and Lk&l=0.0 is, formally,
the same as the absence of lift force over the entire chan-
nel. The cases with the threshold distance equal to 1.0ap
were considered in order to check the consistency of the
results. Indeed, only small differences were observed be-
tween the cases that are formally the same, which can
be attributed to the details of the implementation and
to the slight differences between the runs (initial fields,
run times, etc.).

The simulations of type (i), without lift force and with-
out a virtual particle-bouncing wall, are presented in
Cargnelutti et al.[3]. Overall, the agreement between
the simulations and the experiments, both for the fluid
and the particles, was very good. The only exception
was for the particle concentration and the particle mean
normalwise velocity profile, which indicated that a fully-
developed situation could not be reached, and the parti-
cles kept accumulating at the bottom wall.
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The reason why a fully-developed concentration profile
is not reached in simulations of type (i) can be under-
stood by a balance of forces in the vertical direction. For
the situation considered here, when the particle is at rest
at the bottom wall, in order to have a vertical drag force
larger than the gravitational force the velocity of the sur-
rounding fluid needs to be larger than 0.24uτ , however,
the root-mean-square value of the vertical velocity fluc-
tuation of the fluid at one radius from the bottom wall
is u′z ≈ 0.03uτ . Since in the point-particle approach the
velocity of the surrounding fluid is given by the velocity
of the fluid at the position of the center of the parti-
cle, the chance of having a fluid velocity large enough to
resuspend the particle is extremely small.

The experimental profiles at x/h=75 and x/h=160
are not very different, indicating that the profiles at
x/h=160 can be considered fully-developed, and they
are both used for comparison with the numerical data
(denoted by exp75 and exp160 in the figures).

The concentration profiles are shown in figure 3, with
the ‘theoretical’ Rouse profile also shown as a ‘rough ref-
erence’. For the simulations of type (ii), with the virtual
particle-bouncing wall, we can see a good agreement with
the experimental data for case (c) with Lfull=1.1ap and
Lfull=1.05ap, and for case (a) (both with Ll&a=1.2ap
and Ll&a=1.05ap), but not for the other cases.

The results shown in figure 3 indicate that a ‘full lift
force’ is enough to promote an adequate resuspension of
the particles, and that, provided an adequate resuspen-
sion is promoted, the lift force does not play a significant
role in the simulations. They also indicate that the de-
tails of the near-wall resuspension mechanism are not
important, provided that is strong enough to promote
an adequate resuspension of the particles. Note that the
lift force model of Leighton and Acrivos [7] is known to
overestimate the lift force at the wall; therefore its use
near the wall is enough to promote an adequate resus-
pension of the particles, without the need to use the lift
force in the rest of the channel.

The mean normalwise particle velocity profiles are
shown in figure 4 (since several of the cases gave approx-
imately the same results, not all the cases are shown).
The results are consistent with the concentration profiles
of figure 3, showing that the case where a good agree-
ment with the experimental data was obtained have a
mean normalwise velocity profile close to zero, indicat-
ing a fully-developed profile. The other cases have a non-
zero mean normalwise velocity towards the bottom wall,
indicating that the near-wall resuspension mechanisms
are not strong enough.

Figure 3: Particle concentration normalized by the value
at z/h=0.125 (z+=125), as a function of the distance to
the wall (in wall-units).

Apart from the concentration and the mean normal-
wise velocity profile, all the other particle statistics pro-
files obtained from the different numerical simulations
showed a good agreement between themselves and with
the experimental data, regardless of the type of simu-
lation. The results for the mean streamwise velocity,
streamwise velocity fluctuation, normalwise velocity fluc-
tuation, and Reynolds shear-stress, are shown in figures
5 to 8. From the results it is clear that both the lift force
and the near-wall resuspension mechanism do not play a
significant role.

Figure 4: Mean normalwise particle velocity (in wall-
units) as a function of the distance to the wall (in wall-
units).

Figure 5: Mean streamwise particle velocity (in wall-
units) as a function of the distance to the wall (in wall-
units).

Figure 6: Root-mean-square of the streamwise particle
velocity fluctuation (in wall-units), as a function of the
distance to the wall (in wall-units).
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Figure 7: Root-mean-square of the normalwise particle
velocity fluctuation (in wall-units), as a function of the
distance to the wall (in wall-units).

Figure 8: Particle Reynolds shear-stress (in wall-units),
as a function of the distance to the wall (in wall-units).

4 Conclusions
The results from standard point-particle direct numerical
simulations were compared with PIV/PTV experiments
in a horizontal open water channel flow with a dilute
particle-concentration, for small spherical particles with
a density slightly above the fluid density. The compari-
son shows a good agreement between the simulations and
the experiments, provided a strong enough near-wall re-
suspension mechanism is present.

The use of a ‘full lift force’ model is adequate to pro-
mote a strong enough resuspension mechanism. How-
ever, the details of the near-wall resuspension mecha-
nism are not important, and good results are obtained
with both a simple ad-hoc resuspension model, consist-
ing of a virtual particle-bouncing wall, and the near-wall
Leighton and Acrivos model [7], which is known to over-
estimate the lift force at the wall.

Except for its role in providing a resuspension mecha-
nism, and therefore ensuring that a fully-developed or
statistically-steady situation is reached, the lift force
does not play an important role and similar results are
obtained with and without the lift force, except for the
particle concentration and the particle mean normalwise
velocity. Also, except for the particle concentration and
the particle mean normalwise velocity, similar results are
obtained regardless of the resuspension mechanism (a lift
force, an ad-hoc virtual particle-bouncing wall, or none).

The good agreement between the simulations and the
experiments, and the lack of sensitivity of the results

to particular model choices, indicates the adequacy and
robustness of point-particle DNS, even when the parti-
cles are no longer ‘much smaller’ than the Kolmogorov
length-scale. From a pragmatic perspective this is partic-
ularly important, because from a strict formal perspec-
tive the point-particle approach is valid only in the limit
when the particles are ‘much smaller’ than the smallest
flow scales, whereas in many situations of interest the
particle size is of the same order of magnitude of the
smallest length scales of the flow; like the situation con-
sidered here, where the particle size is of the same order
of magnitude of the Kolmogorov length-scale.
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Abstract
Transport, dispersion and segregation of inertial particles
in turbulent flows are crucial phenomena in a number of
technological applications. From a physical viewpoint,
whichever the geometry of the flow, particle dynamics is
controlled by turbulent flow structures whose time scale
is comparable to the particle relaxation time. In previous
works focusing on dispersed flow in channels and pipes
(see Soldati and Marchioli (2009), and references therein
for a review), we have shown that there is a strong cor-
relation between coherent wall structures, local particle
segregation and subsequent deposition. This is true also
in more complex configurations. As discussed in Cam-
polo et al. (2005), for instance, particle dispersion in
a transverse jet is controlled by specific flow structures
and the extent of this interaction can be used to im-
prove/reduce dispersion (Campolo et al., 2008). A statis-
tical characterization of particle preferential segregation
is thus important to provide a sound physical picture of
the dispersion mechanisms and to develop accurate pre-
dictive models. In this paper we consider well-known
case studies, namely turbulent channel flow and jet in
cross-flow, to survey two statistical tools, the segrega-
tion parameter and the correlation dimension, that suite
the purpose. We will also show how these tools may be
used to devise strategies for particle segregation control
in practical applications.

1 Statistical tools for quantification of par-
ticle segregation
The instantaneous location of particles in a turbulent
flow field can provide relevant information about the
nature of the dispersion process if we look at it using
suitable tools. Due to their inertia, particles are never
uniformly distributed: they accumulate preferentially in
specific regions and avoid some other regions of the flow.
By simply counting the number of particles within given
subspaces of the flow domain, the statistical distribution
of the local particle number density can be obtained and
used to measure particle relative tendency to segregate
and preferentially concentrate in a turbulent flow field.
One way to do so is given by the segregation parameter,
D, also referred to as deviation from randomness (Fessler
et al., 1994). The segregation parameter is calculated as:

D = σ − σPoisson
μ

, (1)

where σ represents the standard deviation for the actual
particle number density distribution and σPoisson repre-
sents the standard deviation for a Poisson distribution,

which corresponds to a purely random distribution of
the same average number of particles. The parameter μ
is the mean particle number density. According to Eq.
(1), the value D = 0 corresponds to a random particle
distribution, D < 0 corresponds to a uniform particle
distribution, and D > 0 indicates segregation of parti-
cles. In this latter case, the larger is the value of D,
the stronger is segregation. The segregation parameter
has been applied to homogeneous isotropic turbulence
(Février et al., 2005) and to the centerline of a turbulent
channel flow (Fessler et al., 1994): attention was focused
on two-dimensional regions of nearly homogeneous flow
to quantify the degree of organization of particle patterns
due to particle response to small-scale turbulent motions.
In our works, we have extended the use of the D parame-
ter to three-dimensional regions of more complex config-
urations, characterized by flow inhomogeneities and by
a wider range of spatial and temporal turbulent scales.

Technical details on the calculation of D are given in
Soldati and Marchioli (2009). Here, it suffices to remark
that the value calculated for D depends on the cell size.
Because of this dependency, the segregation parameter
can not provide an absolute, clearcut quantification of
particle segregation; rather it should be used just to iden-
tify and compare differences in the tendency of particles
to segregate in a turbulent flow field according to their
inertia. Taking this into account, the cell size depen-
dency can be partially overcome by computing the par-
ticle number density distribution for several values of the
cell size and keeping only the largest value of D, referred
to as Dmax hereinafter (Picciotto et al., 2005; Février et
al., 2005). This choice is justified by the fact that the
cell size for which D is a maximum provides informa-
tion about the length scales on which particles are being
clustered.

In several previous numerical works (see Soldati and
Marchioli (2009), and references therein), we have tried
to extend the use ofD to Turbulent Channel Flow (TCF)
to characterize inhomogeneities arising in particle distri-
bution along the wall-normal direction. To this aim, the
flow domain was divided into wall-parallel bins of equal
thickness and a local value of the segregation parame-
ter was computed applying Eq. (1) for each slab. In
this way, the wall-normal behavior of D can be evalu-
ated. In Campolo et al. (2008) we further applied D to
a transverse jet flow. Even if this flow is strongly inho-
mogeneous and intrinsically time-dependent due to the
quasi periodic formation of large scale vortices, the time
behavior of D computed for swarms of particles injected
at different instants proved useful to evaluate differences
in the dispersion behavior induced by the different time
of injection.

In the problems just mentioned, the analysis on par-
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ticle segregation was complemented by providing a sin-
gle quantitative measure rather than the two numbers,
D and the length scale for that value of D. Such mea-
sure is given by the correlation dimension, introduced by
Grassberger and Procaccia (1983) to quantify the frac-
tal dimension of the subspace in which particles clus-
ter. In its three-dimensional formulation needed to study
non-isotropic flows, this parameter can be computed by
choosing one base particle and counting the fraction,
Np(r), of particles within a distance r from the base
particle. The correlation dimension, ν, is defined as
the slope of Np(r) as a function of r in a log-log plot.
The probability distribution of the distance between the
neighboring particles and the base particle is obtained
repeating this count for all possible values of r, thus re-
moving any dependence on the length scale used. To
compute results significant from a statistical perspective,
the procedure can be repeated for different randomly
chosen base particles and different times, averaging the
results. In general, Np(r) will scale with rν such that
smaller values of ν indicate greater preferential concen-
tration: if particles are uniformly distributed in the vol-
ume surrounding the base particle, Np(r) will scale with
r3 (namely with the volume of the sphere centered on
the base particle) and the correlation dimension will be
3; if particles are uniformly distributed over a surface,
Np(r) will scale with r2 (namely with the area of the
circle centered on the base particle) and the correlation
dimension will be 2; whereas if particles are concentrated
into a line, Np(r) will scale with linearly with r and the
correlation dimension will be 1. For more complex parti-
cle distributions, the correlation dimension will be a non
integer value.

In the following, we will show how the segregation pa-
rameter and the correlation dimension were used both to
characterize from a fundamental viewpoint local particle
segregation in wall-bounded turbulence and to control
particle dispersion in more practical flow configurations.

2 Case studies

A. Quantification of local particle segregation in
turbulent channel flow

Results shown in this section refer to a particle-laden
turbulent Poiseuille flow of air (incompressible and New-
tonian) in a channel at Reτ = uτh/νf = 150, where
uτ is the friction velocity, νf is fluid viscosity and h
is the channel half-height. TCF was chosen as it rep-
resents a well-known archetype of wall-bounded shear
flow. We used pseudo-spectral direct numerical simu-
lation to compute the flow field in a reference geome-
try consisting of two infinite vertical flat parallel walls
with periodic boundary conditions in the streamwise (x)
and spanwise (y) directions and no-slip conditions at the
walls. The computational domain, sketched in Fig. 1a),
is 1885 × 942 × 300 wall units (i.e. in terms of vari-
ables identified with the superscript “+” made dimen-
sionless using νf and uτ ) in x, y and z, discretized with
128× 128× 129 grid nodes.

We tracked five swarms − O(105) − of heavy particles,
characterized by diameters in the range 9 ÷ 228 μm
corresponding to values of the Stokes number, St, equal
to 0.2, 1, 5, 25 and 125. In wall turbulence, the Stokes
number may be expressed as particle response scale, τp =
ρpd

2
p/18μf , made dimensionless using νf and uτ . To

characterize the collective behavior of particles, we chose
a simplified numerical setting in which i) particle mass
fraction and volume fraction are small enough to neglect

inter-particle collisions and particle feedback onto the
gas flow (one-way coupling approach), and ii) particles
are pointwise, rigid spheres that rebound elastically at
the wall. The Lagrangian equation of particle motion
includes only the effects of particle inertia and Stokes
drag, with non-linear correction of the drag coefficient
applied for particle Reynolds numbers larger than unity.
Initially, particle number concentration is uniform and
particle position is chosen randomly.

Figure 1: Particle dispersion measurements in turbulent
channel flow. Panels: a) Particle-laden turbulent gas
flow in a channel: sketch of the computational domain
and minimal schematics of near-wall turbulent coher-
ent structures. Strong causal relationship links low-speed
streaks to ejections generated by quasi-streamwise vor-
tices, which also generate in-sweeps of high streamwise
momentum fluid to the wall in the high velocity regions.
b) Cross-section of the flow field and front view of par-
ticles in the region of particle accumulation. c) Maxi-
mum deviation from randomness, Dmax, as function of
the wall-normal coordinate, z+, at different time inter-
vals (I, II, III, IV and V) for St=25 particles.
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As mentioned, particle transfer processes are domi-
nated by the dynamics of turbulent structures in the
proximity of the wall. A pictorial view of particle trans-
port mechanisms is provided in Fig. 1b), where one in-
stantaneous snapshot of particle distribution and turbu-
lent coherent structures in the near-wall region of the
channel is shown. Here, we focus on a cross-sectional
window (y − z plane) of the computational domain hav-
ing thickness equal to one streamwise cell, where strong
particle accumulation takes place between two subse-
quent vortices. Vectors represent the fluid velocity in
the plane and grayscale isocontours map the values of
the streamwise velocity component. A strongly coherent
ejection of low-momentum fluid is apparent in the mid-
dle of the figure, where one low-speed streak is lifted and
flanked by two counter-rotating vortices. In-sweeps of
high-momentum fluid are also visible on the downwash
side of the vortices. Particle position is identified with
the circles − larger than the real scale for ease of visu-
alization. Light gray particles have wall normal velocity
directed away from the wall whereas dark gray particles
have wall-normal velocity directed toward the wall. The
structures depicted in Fig. 1b) control the deposition
process: (i) they accumulate particles in a region not far
from the wall; (ii) they produce the sweeps which bring
particles to the wall; (iii) they may trap particles in the
wall region or (iv) they may entrain particles again in the
outer flow. It was shown previously that particles are ei-
ther re-entrained immediately by the same vortex which
brought them to the wall or confined for very long times
in the viscous region (Narayanan et al., 2003). As a con-
sequence, particle transfer fluxes toward the wall have
higher intensity than particle transfer fluxes away from
the wall. In turn, unbalanced fluxes lead to nonuniform
(preferential) distribution of particles within the flow and
produce near-wall particle accumulation (Marchioli and
Soldati, 2002).

To provide a trend in the temporal behavior of particle
preferential distribution, Fig. 1c) shows the maximum
values of the segregation parameter, Dmax, along the
wall-normal direction for five subsequent time intervals.
Intervals are indicated with Roman numbers and corre-
spond to different stages of the dispersion process. Each
profile was obtained averaging Dmax over 1000 nondi-
mensional units. For brevity, only results for the St = 25
particles are shown. Confirming the anisotropic nature
of particle preferential distribution, Dmax increases in
the near-wall region, and particularly in the viscous sub-
layer where profiles develop a sharp peak corresponding
to the last point in the plot. This behavior is common
to all particle sets investigated (Marchioli et al., 2006).

Fig. 2 shows the maximum value of the segrega-
tion parameter, Dmax (black circles), as a function of
the particle Stokes number, St, in the viscous sublayer
(0 < z+ < 5). Values indicate that the maximum seg-
regation is obtained for the St = 25 particles, which
exhibit the strongest tendency to sample preferentially
the flow field. This indicates that particle dynamics in
the viscous sublayer is controlled by flow structures with
non-dimensional timescale τ+

f � 25. Considering that
τ+
f scales linearly with wall distance and decreases pro-

gressively as the turbulence structures lie closer to the
wall, we can infer that this value corresponds to the cir-
culation time of the turbulence structures in the buffer
layer (5 < z+ < 30). The correlation dimension cal-
culated for the same particle sets is also shown in Fig.
2 (open circles). The correlation dimension is always
smaller than 2, indicating that, regardless of their size,
particles never attain a uniform spatial distribution. It

is confirmed that, while nearly random distribution is
observed for the smaller particles, preferential concen-
tration is maximum for particles with Stokes numbers
around 25. In particular, the minimum value ν � 1.53
indicates that the preferential accumulation of these par-
ticles mainly occurs in elongated structures.

Figure 2: Maximum deviation from randomness, Dmax
(black circles), and correlation dimension, ν (open cir-
cles), in the viscous sublayer as a function of the particle
Stokes number, St. Data are relative to the no-gravity,
no-lift flow.

B. Quantification and control of local particle seg-
regation in transverse jet
Transverse jets are used in many industrial flow config-
urations to achieve effective mixing between a dispersed
phase (particles or droplets) and a main stream (e.g. fuel
injection in combustion chambers, post-combustion con-
trol devices): species are injected by a carrier fluid nor-
mal to the main, transverse stream and the desired mix-
ing effect some distance away from the jet exit can be
obtained by tuning the jet flow and/or the crossflow.

The flow field generated by the jet is characterized
by the instability of the jet shear layer which, even un-
der steady state conditions (i.e. constant velocity pro-
file for the jet and the transverse stream), promotes the
(quasi periodical) formation of large-scale roll-up struc-
tures (shear layer vortices, SLVs) at the jet interface, as
sketched in Figure 3. SLVs dominate the initial portion
of the jet, the downstream side of which is character-
ized by formation of wake vortices; farther downstream,
streamwise counter-rotating vortices dominate the flow
field.

In a previous work (Campolo et al., 2005) we used
the correlation dimension analysis to demonstrate that
preferential accumulation of particles into specific pat-
terns is selectively observed depending on the particle
size. Since the characteristic time of segregated parti-
cles fits with the time scales of the SLVs, we concluded
that these structure are those controlling mixing in the
transverse jet. In our opinion, this suggests the possi-
bility to modulate the dispersion of species exploiting
the time-dependent nature of the mixing structures, in-
stead of controlling “actively” their generation through
jet forcing techniques −see Shapiro et al. (2003), and
Karagozian et al. (2005) for details on jet forcing. In
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Campolo et al. (2008) we proposed to use pulsed in-
jection of particles and precise synchronization between
injection time and flow structures dynamics. To prove
the idea we performed a numerical experiment (a coarse
DNS) in which the Eulerian-Lagrangian approach is used
to simulate the dispersion of packets of 5 μm particles,
those more responsive to the SLVs. Each packet is made
of 5000 particles, transported into the crossflow by the
jet. The Stokes number of these particles can be given
as St = τp/Tslv = 0.64, where Tslv is the time of circu-
lation of SLVs. The jet Reynolds number and the cross-
flow Reynolds number are Rejet = UjetD/νf = 2000 and
Recf = UcfD/νf = 400, whereD is the jet exit diameter,
and Ucf is the unperturbed crossflow velocity. The com-
putational domain, sketched in Fig. 3a), is 12D×8D×9D
in the streamwise, spanwise and vertical directions, re-
spectively, discretized using 92× 58× 51 finite volumes.
Smaller volumes are used to describe the jet exit region.
For further details on boundary and initial conditions for
both phases, see Campolo et al. (2005) and Campolo et
al. (2008).

We focused specifically on the effect produced on par-
ticle dispersion by different time delays of injection. Fig-
ure 3 sketches schematically the particle injection times.
Time zero (not indicated in the sketch) corresponds
to the injection of the first (of 490 simulated) particle
packet. Top-down grayscale arrows identify the time of
injection of four (out of 490) significative particle pack-
ets chosen for the analysis. The solid line represents the
spanwise vorticity signal sampled shortly downstream of
the jet exit. This signal allows to monitor in real time
the formation of SLVs (Megerian and Karagozian, 2005),
eventually adjusting the time shift between the pulsed in-
jection of particle and the formation of mixing vortices.
Black arrows identify the time at which the snapshot
shown in Figure 3 were taken. Injection times for parti-
cle packets (a), (b), (c) and (d) differ by T = Troll−up/2
each, Troll−up being the frequency of formation of SLVs.
This choice is made to evaluate variations in particle dis-
persion due to the interaction of the four particle pack-
ets with a couple of spanwise SLVs at different stages
of their evolution. Figures 3b-c) show four snapshots of
particles from packets (a)-(d) about 2 Troll−up after the
injection of each packet. Only particles contained in the
jet symmetry plane (i.e. within the slab ‖y/D‖ < 0.25)
are shown, superposed to spanwise vorticity isocontours,
which are used to visualize SLVs. Particles belonging to
packets (a) and (c) seem to be effectively entrained by
SLVs, being wrapped backward around the vortex in the
jet symmetry plane. Particles belonging to packets (b)
and (d) seem to escape this strong interaction, moving
downstream slightly faster than packets (a) and (c). This
has consequences on the dispersion of particles.

We tried to quantify the preferential accumulation of
particles injected at different times using the segregation
parameter (Dmax): the statistical distribution of the lo-
cal particle number density was obtained for different
subspace dimension, and the segregation parameter was
defined as Dmax, i.e. the largest value obtained over the
different subspace dimensions. We should remark here
that in the jet in crossflow the random distribution of
particles in the whole computational domain does not
represent a “realizable” state for the particle/flow sys-
tem, since (i) the particles are initially clustered at the
point of injection and (ii) some regions of the flow (for
instance, the region of the crossflow which is upstream
the jet orifice) can never be explored. This poses some
interesting issues on the use of D as a robust indicator of
particle segregation: the quantifier is biased because the

random distribution can not be obtained, and can not
discriminate between the clustering generated by injec-
tion and the clustering resulting from mixing/de-mixing
by vortical structures. However, our focus is to iden-
tify differences in preferential segregation among parti-
cle packets which should definitely be ascribed to the
effect of clustering by mixing/de-mixing vortical struc-
tures. Furthermore, the length scale at which clustering
occurs allows to discriminate if the clustering is the result
of initial segregation or if it is generated by vortical struc-
tures. From our calculation we found that the length
scale associated with D increases over time, indicating
that while at the starting time clustering is controlled by
injection conditions, at later times it is associated with
the mixing/de-mixing action of specific flow structures
(SLVs).

Figure 3: Particle dispersion control by synchronized in-
jection in transverse jet. Panels: a) b) Injection time
of four particle packets (top-down grayscale arrows) and
time of visualization (black arrows). The oscillating line
represents the variation of spanwise vorticity sampled
near the jet exit. Packets are injected ΔTroll−up/2 one
after the other. c) Time evolution of dispersion patterns
for the different packets.
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Figure 4 shows the time evolution of D for packets
(a)-(d). Initially the value of D is large for all packets
indicating that the preferential segregation of particles
in the issuing volume is imposed by injection conditions.
This value decreases over time as particles move and dis-
perse into the flow. When the time of flight becomes
larger than 0.02 s, particles start to interact with SLVs
inducing fast decrease of D, the rate of decrease being
larger for particle packets (a) and (c) than for particle
packets (b) and (d). For all packets, the value of D re-
mains very large for airborne particles, indicating that
they do not disperse in the entire volume. Interestingly,
after the interaction with SLVs, the value of D for par-
ticle packets (a) and (c) becomes lower than for particle
packets (b) and (d). This indicates that for packets (a)
and (c), the vortical structures are more effective in de-
stroying the initial clustering, dispersing particles more
homogeneously in space, whereas for packets (b) and (d),
the interaction with the same structures at a different
stage of their evolution is not strong enough to promote
effective dispersion.

Figure 4: Variation over time of the segregation param-
eter for packets injected Troll−up/2 one after the other.

3 Conclusions and Outlook
A statistical characterization of particle preferential seg-
regation is important to provide a sound physical picture
of the dispersion mechanisms and to develop accurate
predictive models. In this paper, the possibility to mea-
sure and control local particle segregation in a turbulent
flow is analyzed by means of two statistical tools: the seg-
regation parameter and the correlation dimension. The
analysis is performed considering two simple yet fully
relevant case studies: particle-laden turbulent channel
flow and particle-laden transverse jet. The segregation
parameter can be used to compare the distribution of
particle resulting from the actual concentration field to
the expected distribution for the same number of parti-
cles randomly distributed throughout the flow domain.
Results for particle dispersion in turbulent channel flow
indicate that significant departures from randomness oc-
cur and that the differences are strongly dependent on
the response time of the particles. Also, the length scale
of the particle clusters is found to change with the par-
ticle size. To avoid such dependence, the correlation
dimension can be used to produce a single parameter
describing the degree of concentration regardless of the
scale on which it occurs. Results for particle dispersion

in transverse jet demonstrate that the dispersion of par-
ticles changes if particles are injected at different times,
indicating a potential route to particle dispersion control
through synchronized pulsed injection of species.
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1 Introduction

In the framework of dispersed two-phase flow prediction cou-
pled with Reynolds-averaged Navier-Stokes (RANS) mod-
elling for the fluid phase, the improvement of stochastic mod-
els aimed at predicting the fluid velocity along a discrete parti-
cle trajectory is a challenging issue. Actually, such models are
of interest not only for Eulerian-Lagrangian techniques, but
also for closure of Eulerian-Eulerian PDF (Probability Den-
sity Function) approaches based on the joint fluid-particle ve-
locity distribution (Simonin et al., 1993; Minier and Peirano,
2001), in which a stochastic differential equation for the ve-
locity of the fluid seen by a discrete particle is used to close
the PDF transport equation. As this stochastic differential
equation is generally built by analogy with the Langevin type
equations used in the PDF approaches for one-phase turbu-
lence modelling, in a way that ensures consistency in case of
dispersed flow with low inertia particles, it is of special inter-
est to investigate the parameters entering the Langevin model
in non homogeneous turbulent shear flows.

Here we focus on the so-called “Generalized Langevin
Model” (GLM, Haworth and Pope, 1986), which is consistent
with Kolmogorov’s inertial range scaling and with second-
order closure models (Pope, 1994a,b). Provided the time in-
terval belongs to the inertial range, the increment of the in-
stantaneous velocity of a fluid particle is modelled by:

dui = −1
ρ

∂〈p〉
∂xi
dt+Gij (uj − 〈uj〉) dt+BijdWj , (1)

where 〈p〉 and 〈u〉 are the mean terms (ensemble average) of
pressure and velocity respectively, Wi is a Wiener process,
Gij and Bij are the parameters of the GLM, called drift and
diffusion tensors, respectively. This generalized Langevin
model PDF equation is completely determined as soon as G ij
andBij are specified. The purpose of this paper is to present a
route to deriveGij andBij in some class of non homogeneous
turbulent flows, namely channel or pipe flows.

A wide variety of turbulent flows can be modelled due to
the flexibility in the functional form of G ij and Bij offered
by the GLM equation (Minier and Pozorski, 1995; Das and
Durbin, 2005). For instance, in isotropic turbulence, the func-
tional form of these parameters is well established. The drift
tensor is Gij = Gδij , where −G exactly represents the in-
verse of the turbulence Lagrangian time scale. The consis-
tency of the GLM with the Kolmogorov similarity theory for
the second-order Lagrangian velocity structure function in the
inertial subrange is usually invoked to determine B ij . In this
case Bij is expressed as a function of Kolmogorov’s constant,
C0, and the dissipation rate of the mean turbulent kinetic en-
ergy, ε, as Bij =

√C0ε δij (Pope, 1987). Yet, it has to be
noted that this relation is generally used in more complex tur-
bulent flows (Haworth and Pope, 1987). However, in such

cases there is a distinction between the Kolmogorov constant
and the Langevin model constant (Pope, 2000).

In homogeneous turbulent shear flow, Pope (2002) showed
the anisotropic character of the drift tensor G ij and empha-
sized the strong anisotropic behavior of the diffusion tensor
Bij , contrary to conventional modelling assumptions. More-
over, Pope presented a guideline to determine the Langevin
parameters using DNS data as a function of the Lagrangian
time scale tensor and Reynolds stresses. More details about
the identification procedure will be given in the next Section.
This method was recently used by Walpot et al. (2007) in a
pipe flow at two values of the Reynolds number based on pipe
radius and friction velocity, i.e., Reτ =180 and 323. From
DNS and experimental data, Walpot et al. (2007) estimated
partially the Langevin parameters appearing in the stochas-
tic process. Similarly to Pope, they observed the anisotropic
character of the drift term. To assess the diffusion term,
they proposed to slightly generalize the usual isotropic model
√C0ε δij to a diagonal diffusion matrix with Bii =

√
C(i)

0 ε ,

where C(i)
0 varies in the wall-normal direction.

In this work, we intend to specify the drift and diffusion
matrices of the GLM from DNS data of a turbulent channel
flow at Reτ = 185 (based on channel half-width). The layout
of the paper is as follows. First, we describe the procedure
used to identify the Langevin parameters from DNS data of
a turbulent channel flow (Section 2). In Section 3, the results
on Langevin parameters are presented and compared directly
to those obtained by Walpot et al. (2007) for the drift tensor
components in a turbulent pipe flow. The values of the dif-
fusion tensor in the channel flow are also compared to those
extracted from their DNS pipe flow results. Finally, a posteri-
ori validation is carried out (Section 4) and some conclusions
are drawn in Section 5.

2 Identification of the Langevin model parame-
ters

The starting point of the study by Pope (2002) is the GLM
written in terms of the fluctuating fluid velocity time incre-
ment, u′i, as:

du′i = dui − d〈ui〉

= G̃iju′jdt+BijdWj +
∂〈u′iu′j〉
∂xj

dt , (2)

where G̃ij = Gij − ∂〈ui〉
∂xj

. The analogy between our work

and Pope’s analysis lies in the connection of G̃ij and Bij to
the Reynolds stress tensor Cij =

〈
u′iu
′
j

〉
and the Lagrangian
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time scale tensor Tij defined by

Tij =
∫ ∞

0
C−1
ik 〈u′k(0)u′j(τ)〉dτ , (3)

where C−1
ij denotes the i−j component of the inverse of the

Reynolds stress tensor. The idea of Pope (2002) in a linear
turbulent shear flow was to calculate the autocorrelation func-
tion of the stochastic process (2) in which (∂

〈
u′iu
′
j

〉
/∂xj)

vanishes due to the homogeneity of the turbulence. Such a
pathway allowed him to obtain a simple relation between the
drift and Lagrangian time scale (TTT) tensors. In non homoge-
neous turbulence, the presence of the term (∂

〈
u′iu
′
j

〉
/∂xj)

in Eq. (2) complicates the situation. Therefore, we have to
assume ∂

〈
u′iu
′
j

〉
/∂xj ≈ 0 in order to determine G̃ij andBij .

The validity of this approximation will be checked in Section
4. Consequently, Eq. (2) reduces to:

du′i = G̃iju′jdt+BijdWj . (4)

It can be easily shown (Oesterlé and Zaichik, 2004) that
the Lagrangian time scale tensor TTT and the drift matrix G̃ are
connected by:

TTT =
(
−G̃−1

)T
. (5)

In order to determine the diffusion tensor, B, the covari-
ance of the stochastic process, Eq. (4), has to be calculated
keeping in mind that the stochastic differential equation is de-
fined in the Itô sense. Making use of Itô’s formula to evaluate
the differential of the product u ′iu

′
j and taking the average of

the resulting expression yields:〈
d(u′iu′j)
dt

〉
= G̃ikCkj + G̃jkCki +BikBjk . (6)

The major difference between the study of Pope and ours lies
in the non-homogeneous character of the turbulence. Actu-
ally, in a statistically homogeneous turbulence the left hand
side of Eq. (6) can be expressed in terms of the Reynolds
stress tensor as 〈

d(u′iu′j)
dt

〉
=
d

〈
u′iu
′
j

〉
dt

, (7)

whereas in non homogenous turbulence the average of the
time derivative of the product u ′iu

′
j is equal to:

〈
d(u′iu′j)
dt

〉
=
∂

〈
u′iu
′
j

〉
∂t

+ 〈uk〉
∂

〈
u′iu
′
j

〉
∂xk

+
∂

〈
u′iu
′
ju
′
k

〉
∂xk

.

(8)
Nevertheless, the present turbulent channel flow being sta-
tistically stationary and homogeneous in the streamwise and
spanwise direction, Eq. (8) is reduced to:

〈
d(u′iu′j)
dt

〉
=
∂

〈
u′iu
′
ju
′
2
〉

∂x2
, (9)

where x2 denotes the wall-normal direction. Invoking the
local homogeneity assumption, the turbulent diffusion term
∂

〈
u′iu
′
ju
′
2
〉
/∂x2 can be neglected, leading to the simplified

relationship:

BikBjk = −G̃ikCkj − G̃jkCki . (10)

In the next section, we present the estimated values of the
Langevin parameters obtained using Eqs. (5) and (10) and
data extracted from a channel flow DNS.

3 Results

As mentioned before, the definition of the fluid Lagrangian
time scale tensor used by Pope (2002), see Eq. (3), is different
from that used here. We have computed the Lagrangian time
scales from the following relation:

TLij =
∫ ∞

0
RLij (τ)dτ , (11)

where RLij (τ) is defined by

RLij (τ) =
〈
u′i(0)u′j(τ)

〉
√
〈u′2i (0)〉 〈u′2j (τ)

〉 . (12)

The major difference between Eq. (3) and Eq. (11) lies in the
normalization of the covariance. Pope (2002) normalized it
by the Reynolds stresses, Cij =

〈
u′iu
′
j

〉
, whereas we used the

root mean square of the velocity fluctuations. Nonetheless,
under the local homogeneity assumption, our definition of the
Lagrangian time scales is equivalent to:

TLij �
1√

〈u′2i (0)〉 〈u′2j (0)
〉

∫ ∞
0

〈
u′i(0)u′j(τ)

〉
dτ . (13)

Consequently, our computed Lagrangian time scales are re-
lated to those defined by Pope (2002) by the following rela-
tionship:

√
〈u′2i (0)〉 〈u′2j (0)

〉
TLij =

∑
k

〈u′iu′k〉Tkj . (14)

The Lagrangian time scales T Lij and the Reynolds stress tensor
being known from our DNS computations, T ij can be easily
deduced from this system of linear equations.

To sum up, the Lagrangian time scale tensor, T ij , is com-
puted from Eq. (14) using the data provided by a turbulent
channel flow DNS. Then, the drift coefficients Gij are de-
duced by Eq. (5). Finally, the diffusion tensorB ij is estimated
using Eq. (10).

A few details on the present DNS

The domain size in the streamwise, wall-normal, and span-
wise direction is 2.5πδ × 2δ × 1.5πδ and the corresponding
grid 192 × 128 × 160, respectively. Computations are oper-
ated at Reb = 2800 and the flow rate is kept constant (the
Reynolds number based on the wall shear velocity is 185).
The channel flow is homogeneous in the streamwise and span-
wise directions, and periodic boundary conditions are applied
in these directions. The second order finite difference DNS
solver is based on the model proposed by Orlandi (2000). The
time discretisation is semi-implicit, i.e. the non-linear terms
are written explicitly with a third-order Runge-Kutta scheme
and the viscous terms are written implicitly using a Crank-
Nicolson scheme. In the wall-normal direction, the mesh is
stretched according to a hyperbolic tangent law, whereas a
uniform mesh is applied in the streamwise and spanwise di-
rections. The computational time step is Δt+ ≈ 0.1. This
time step is smaller than the Kolmogorov time scale which
is of the order of unity in wall units. The capability of sec-
ond order finite difference solvers to predict realistic turbu-
lent flow statistics has been shown in many papers, see for
instance Choi et al. (1992) and Orlandi (2000).
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The drift coefficients Gij in channel and pipe flows

In Fig. 1, the components of G+
ij are plotted as a function of

y+. Quantities in wall units (i.e., normalized using the friction
velocity uτ and the kinematic viscosity ν) are denoted by the
superscript +. The results obtained by Walpot et al. (2007)
are also reported. Concerning the diagonal components, sim-
ilar results are obtained in the pipe and channel flows. The
anisotropic character of the drift tensor is clearly noticed since
the absolute values obtained for G+

11 (streamwise direction)
are lower than those of the wall-normal component G+

22, the
latter being higher than those of the spanwise componentG+

33.
From the results plotted for the off-diagonal components, it is
interesting to note that G+

21 is zero across the channel and the
pipe. The other non-diagonal component, G+

12, is seen to be
similar to that obtained by Walpot et al. (2007) in a turbu-
lent pipe flow. The present mean fluid velocity gradient as
well as the one provided by Walpot et al. (2007) have also
been plotted. The values of G+

12 and of the mean fluid veloc-
ity gradient can be observed to be close to one another except
in the near-wall region. These results about Gij are impor-
tant since they imply that G̃ij is a diagonal matrix (keeping
in mind G̃12 =G12−∂ 〈u1〉 /∂x2). In the near-wall region,
the results obtained at y+ < 10 (Fig. 1) are questionable but
not surprising for two major reasons. The first one lies in the
use of the Langevin equation in the near-wall region, because
such an equation does not take into account the viscous ef-
fects which are more important at low Reynolds number. The
second reason is that the assumption of local homogeneity is
violated in this region.
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Figure 1: The diagonal and non-diagonal components of the
drift tensor obtained in the present channel flow atReτ=185
and in a pipe flow at Reτ=180 Walpot et al. (2007).

The diffusion tensor Bij in channel and pipe flows

In Fig. 2, the components of the tensorB ikBjk obtained from
Eq. (10), normalized and denoted (B 2)+

ij , are plotted as a
function of y+. The components of the same tensor esti-
mated in a similar way using the data on G̃ij and Cij pro-
vided by Walpot et al. (2007) are also reported. Our proce-
dure to obtain (B2)+

ij is different from that used by Walpot
et al. (2007), who assumed this term to be a diagonal dif-
fusion matrix such as (B2)ij = C(i)

0 εδij in which C(i)
0 was

generally called “Kolmogorov constant” even if it depends on
the considered velocity component. It is preferable to con-
sider C(i)

0 as a new parameter of the stochastic model since
the Kolmogorov constant has a physical meaning only in high
Reynolds number flows. The results confirm that the diffusion
tensor is anisotropic, as previously observed by Pope (2002)
in a turbulent homogeneous shear flow. According to Pope
(2002), such a behavior is probably due to the low Reynolds
number at which the flow is numerically simulated. For the
diagonal and off-diagonal components, it can be noted that
the results in the channel and pipe flows are very similar for
y+ > 50. Below this value, some significant discrepancies
appear. The major one is found for the maximum of (B 2)+

11
since the present value is more than twice as large as the one
extracted from the pipe flow DNS of Walpot et al. (2007).

In the near-wall region, a zero value of (B 2)+
ij at y+ =0 is

observed from the results provided by the channel flow DNS.
In the pipe flow case, the results seem also to tend to zero
at y+ = 0. This value of the diffusion components at the
wall cannot be assessed with the usual modelling of (B 2)+

ij

since the dissipation rate of the turbulent kinetic energy, ε, is
nonzero at the wall and the constant C0 is a positive constant.
Therefore, the diffusion tensor cannot be estimated from the
usual relation (B2)ij = C0εδij in non homogeneous turbulent
flow at low Reynolds number. On the whole, the results ob-
tained for G̃ij and (B2)+

ij in pipe or channel flows at Reynolds
number of the same order of magnitude reveal similar trends.

To summarize, we would like to emphasize that G̃ij is
found to be a diagonal matrix whereas (B 2)+

ij is non diag-
onal (therefore the diffusion tensor B is also non diagonal)
and its components tend to zero at the wall.
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Figure 2: The diagonal and non-diagonal components of
(B2)+

ij obtained in the present channel flow at Reτ = 185
and in a pipe flow at Reτ=180 Walpot et al. (2007).

4 A posteriori validation

In this section, we present some results obtained by tracking
fluid particles using Eq. (2) to generate their fluctuating ve-
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locity, with the drift and diffusion coefficients estimated by
means of our DNS data. Two test cases have been performed.
The first one is intended to check from the instantaneous fluid
particle distribution if the basic law of mass conservation can
be satisfied, while the second test has been performed to as-
sess the validity of our parameter identification and its ability
to produce the correct time decorrelation of the fluid particle
velocity. Moreover, in these two test cases, the influence of
the presence of the divergence of the Reynolds stresses in the
stochastic equation has been studied, recalling that this term
has been neglected in our estimation of the stochastic equa-
tion parameters.

Fluid particle concentration profile

The first test has been conducted to check the mass conserva-
tion law, taking the divergence of the Reynolds stress tensor
[(∂

〈
u′iu
′
j

〉
/∂xj)dt] into account or not in Eq. (2). It has to

be noted that Legg and Raupach (1982) demonstrated that the
absence of this term in a Markov chain model introduces a
spurious drift effect, i.e., an unphysical preferential concen-
tration of fluid-like particles near the wall. In other words, the
concentration profile of fluid-tracer particles uniformly intro-
duced should remain uniform when this term is present. To
perform this test, we have tracked fluid particles according to
the equation :

dXf,i
dt

= 〈ui〉+ u′i , (15)

where Xf,i are the coordinates of the fluid particle, the data
for 〈ui〉 are extracted from the present DNS while u ′i is di-
rectly obtained from the integration of Eq. (2). It should
also be noted that all the mean properties of the fluid motion
(∂ 〈ui〉 /∂xj and ∂

〈
u′iu
′
j

〉
/∂xj) appearing in the stochastic

differential equation are also issued from DNS data. The do-
main was divided into 40 slabs in the wall-normal direction.
Initially, 10 000 particles were introduced in each slabs. Dur-
ing the simulations, fluid particles impacting the wall were
eliminated.

In Fig. 3 the concentration profile normalized by the bulk
concentration is plotted as a function of y+. We have re-
ported the initial concentration profile of the fluid particles,
Ci and the final stationary profiles obtained with and without
neglecting the term (∂

〈
u′iu
′
j

〉
/∂xj)dt in the integration of

Eq. (2). As can be seen, the computed concentration remains
uniform if the term (∂

〈
u′iu
′
j

〉
/∂xj)dt is taken into consid-

eration while without this term the concentration is seen to
increase in the viscous sub-layer and near the channel center.
Consequently, the mass conservation of the fluid is shown to
be satisfied by the formulation of Eq. (2) as soon as the term
(∂

〈
u′iu
′
j

〉
/∂xj)dt is introduced in the stochastic differential

equation.

Fluid Lagrangian time scales

In the second test case, the fluid Lagrangian time scales ob-
tained by tracking fluid particles using the stochastic differ-
ential equation (2) have been compared with the results ex-
tracted from the DNS, in order to verify that our identifica-
tion of the drift and diffusion coefficients produces the correct
time decorrelation of the fluid particle velocity.

For this stochastic simulation, 100 000 fluid particles were
tracked by means of Eq. (15). As for the previous test, the re-
quired Eulerian statistics are taken from the DNS and Eq. (2)
is used to predict the fluctuating fluid velocity at particle lo-
cation. The Lagrangian velocity correlations were computed
during the simulation and post-processed in order to obtain
the associated time scales. The simulations have been con-
ducted in taking or not the divergence of the Reynolds stress
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Figure 3: Concentration of fluid particles across the channel.

tensor into account in the differential stochastic equation. We
have observed that the results were nearly identical, which
means that this term does not influence the time decorrela-
tion of the fluid particle velocity. Therefore, only the results
obtained in taking the Reynolds stress tensor divergence into
account are presented hereafter.

In Fig. 4, the fluid Lagrangian time scales T +
ij issuing from

both the DNS and the stochastic computations are presented
in wall units as a function of y+. Good agreement between
the DNS results and those provided by the stochastic equa-
tion (2) is observed for the three diagonal components of the
Lagrangian time scales. Concerning the off-diagonal compo-
nents, which are also plotted in Fig. 4, the results obtained
from the stochastic simulation are qualitatively in good ac-
cordance with the DNS data since T +

21 is correctly found to be
lower than T+

12 whatever the position in the channel. However,
the absolute values obtained from the stochastic computation
for T+

12 and T+
21 are slightly lower than those provided by DNS

when 50 < y+ < 150. Nevertheless, even if the results for
the non-diagonal components are less satisfactory than those
obtained for the diagonal components, the results are still in
acceptable agreement with the DNS data.

Finally, we would like to emphasize the fact that this a pos-
teriori test is not a complete self-consistent validation. In or-
der to really check the pertinence of the present estimation
of the drift and diffusion coefficients, G̃ij and Bij , it would
be necessary to incorporate them in a purely Lagrangian PDF
method, i.e., a stand-alone PDF method for the turbulence.
From this numerical simulation, the Eulerian statistics (such
as the mean fluid velocity, the Reynolds stress tensor, the
skewness and the flatness of the velocity, etc.) could be ex-
tracted and compared to DNS results as done in the study by
?. Even if the large number of particles required for robust
and accurate simulations would make the simulations very
time-consuming, such tests should be considered as a next
step of the present study.

5 Conclusion

The main goal of the present work was to provide, for a non
homogeneous turbulent flow, estimates of the drift and dif-
fusion coefficients appearing in a Langevin-type stochastic
equation used to predict the fluctuating velocity of fluid par-
ticles. By mimicking the approach derived by Pope (2002)
for homogeneous turbulent shear flows, these parameters have
been identified by means of DNS data.

The present results show that the drift tensor matrix G̃ij can
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Figure 4: Comparison of the diagonal and non-diagonal com-
ponents of the decorrelation time scales extracted from DNS
and those a posteriori computed.

reasonably be assumed to be diagonal, but not spherical, both
for channel and pipe flows at low Reynolds number. The dif-
fusion tensor has been found to be anisotropic, in line with the
observation made by Pope (2002) for a homogeneous turbu-
lent shear flow. Moreover, a zero value at the wall was found
whatever the components of Bij and similar results were also
obtained using the data extracted from the turbulent pipe flow
DNS by Walpot et al. (2007).

In order to validate our estimation of the drift and diffu-
sion coefficients, we have computed fluid particle trajecto-
ries using the generalized Langevin equation (2). We have
verified from the concentration profiles that the model does
not induce any spurious drift provided that the divergence of
the Reynolds stress tensor is included in the stochastic differ-
ential equation. The fluid Lagrangian time scales have also
been extracted from the stochastic simulation, showing satis-
factory agreement with the DNS data. This means that the
time decorrelation of the fluctuating velocity is correctly re-
produced using the estimated drift and diffusion coefficients
in the stochastic differential equation (2). Finally, it should
be noted that the divergence of the Reynolds stresses has to
be taken into account in the stochastic simulation to avoid the
effect of spurious drift, even if it has been neglected in the
procedure used to estimate the stochastic equation parame-
ters. Nevertheless, as shown by the a posteriori simulations,
this approximation does not have any consequences on the
time decorrelation of fluid particle’s fluctuating velocity.

To conclude, we have shown that it is possible to use a
Langevin-type equation to properly predict the time incre-
ment of the fluctuating velocity of a fluid particle in a non
homogeneous flow provided that its parameters are correctly
specified. Anisotropic models of the drift and diffusion ten-
sors remain an open question but it is hoped that the present

study will help to the improvement of PDF models, including
the Lagrangian stochastic approaches for dispersed two-phase
flows.
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Oesterlé, B., Zaichik, L. I., 2004. On Lagrangian time scales and particle
dispersion modeling in equilibrium turbulent shear flows. Phys. Fluids 16,
3374Ű3384.
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Abstract

Discrete Particle Simulation (DPS) can be used in order
to understand the physical mechanisms fluid turbulence
exerts on particle dispersion or on particle-particle colli-
sions and at the same time to provide a reliable reference
data base for the development of statistical modelling
approaches. A correct prediction of these deterministic
simulations is therefore fundamental for the understand-
ing and modelling of these complex phenomena. In this
work a validation procedure for DPS is proposed focus-
ing on both the correct prediction of fluid properties at
the particle position and a correct prediction of collision
handling. The strategy to validate the collision algo-
rithm is based on dry granular flows, which allow testing
the algorithm performance without the disturbing influ-
ence of the fluid phase. Finally it is shown how a correct
handling of droplet coalescence can be assured.

1 Introduction

Particle laden turbulent flows are found in many indus-
trial and practical applications like pneumatic conveying,
circulating fluidized bed, liquid-fuel injection in inter-
nal combustion engines or rain drop formation. These
flows involve a variety of complex phenomena, such as
turbulent dispersion, particle-particle collisions, droplet
coalescence, particle-wall interactions, turbulence modu-
lation by the particles or heat and mass transfer.

The numerical simulation of turbulent two-phase flows
has been extensively improved for the last decades.
Nowadays the development of numerical methods and
the parallel computing allow performing a Direct Numer-
ical Simulation (DNS) of the interstitial fluid between
moving particles [Prosperetti & Oguz 2001]. This ap-
proach is the most physical as it requires a minimum of
closure models. However, even for the simulation of low-
scale particle-liquid fluidized beds [Corre et al. 2009], the
computational cost restricts this method to a quite low
number of particles (roughly 5000 particles). Hence, this
method is usually employed to investigate the momen-
tum or heat transfer at the particle diameter scale [Mas-
sol 2004], but it is impossible to investigate collective
phenomena taking place, such as particle accumulation.

An alternative approach considers each particle as a
material point and the trajectory of each individual par-
ticle is computed in a Lagrangian frame. This approach,
called Discrete Particle Simulation (DPS), can be applied
for several millions of particles and can be coupled either
with DNS or Large Eddy Simulation (LES) of the carrier
phase. The DPS needs models for the momentum or heat
transfer from the fluid to the particles. The turbulence

modulation by the particles (the so-called two-way cou-
pling) is questionable especially when the DPS is coupled
with a LES.

The DPS can be used in order to understand the phys-
ical mechanisms fluid turbulence exerts on particle dis-
persion or on particle-particle collisions and at the same
time to provide a reliable reference data base for the de-
velopment of statistical modelling approaches. A correct
prediction of these deterministic simulations is there-
fore fundamental for the understanding and modelling
of these complex phenomena.

In this paper we propose a step-by-step validation pro-
cedure for DPS of inertial droplets suspended in tur-
bulent flows and undergoing droplet coalescence. This
work proposes a methodology that ensures an accurate
treatment of particle dispersion (section 3) and particle-
particle collisions or droplet coalescence handling (sec-
tion 4). As particles transported by a turbulent flow
are considered, section 2 briefly introduces the numeri-
cal predictions of turbulent flows, while focusing on the
problems related to the coupling of DPS with the numer-
ical simulation of single-phase turbulent flows.

2 Particle path computation & validation

2.1 Particle trajectory

A dispersed phase ofNp spherical particles with diameter
dp and density ρp is considered in this work. Turbulence
modulation by the dispersed phase (two-way coupling) is
neglected, as the solid mass loading is small. Assuming
that the particle to fluid density ratio (ρp � ρf ) is large,
the forces acting on a single particle are reduced to the
drag force and gravity only. Thus, the governing equa-
tions of a single particle is written as [Maxey & Riley
1983, Gatignol 1983]

dxp
dt

= vp, (1)

dvp
dt

= −vp − uf@p
τp

+ g, (2)

where xp and vp are the position and velocity vector of
the p-particles. The particle response time τp is given by

τp = 4
3
ρp
ρf

dp
CD

1
|vp − uf@p| . (3)

According to Schiller & Naumann [1935], for particle
Reynolds number smaller than 1000 the drag coefficient
CD is written as
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CD = 24
Rep
(
1 + 0.15Re0.687

p

)
, (4)

with Re = dp|vp − uf@p|/νf and νf the kinematic vis-
cosity of the fluid.

2.2 Fluid flow prediction
The computation of particle paths in a turbulent flow
needs the knowledge of the exact instantaneous fluid ve-
locity. From a theoretical point of view, Direct Numer-
ical Simulation (DNS) of the Navier-Stokes equations is
the most accurate approach. It is well known that the
DNS is restricted by the Reynolds number and the con-
sequently required grid. However, the development of
the parallel computing permits to perform DNS of quite
large Reynolds number by using with a huge number of
grid points [Kaneda 1996]. The Large Eddy Simulation
(LES) consists in solving the large scales of turbulence
and in modelling the small scales (subgrid scales). The
coupling of DPS with a LES is questionable, as in order
to compute the particle trajectory the instantaneous fluid
velocity is required, but LES gives the instantaneous fil-
tered fluid velocity only. In the literature many papers
are found analyzing the effects of the subgrid fluid veloc-
ity [Armenio et al. 1996, Yamamoto et al. 2001, Kuerten
2006, Fede & Simonin 2006] and proposing stochastic or
deconvolution models [Fede et al. 2006, Pozorski & Apte
2009, Mashayek & Randya 2003]. For a very large num-
ber of particles, more than 10 millions, the coupling of
DPS with an evolving DNS becomes unrealizable due to
the computational cost. However, it is possible to couple
the DPS with a frozen turbulent velocity field extracted
from an evolving DNS [Wang et al. 2000]. In such a
numerical simulation some spurious effect may appear
leading to unphysical phenomena. Figure 1 shows the
particle kinetic energy with respect to the inverse of the
Stokes number with

q2p = 1
2

〈
v
′
p,iv

′
p,i

〉
, q2f@p = 1

2

〈
u
′
f@p,iu

′
f@p,i

〉
, τ

t
f@p
τF
fp

= 1
St ,

where 1/τFfp = 〈1/τp〉 and τ tf@p is the Lagrangian integral
time scale given by

τ tf@p =
+∞∫

0

Rf@p(τ)dτ , (5)

with

Rf@p(τ) =

〈
u
′
f@p,i(t)u

′
f@p,i(t+ τ)

〉

2/3q2f@p
. (6)

Figure 1 shows that the particle kinetic energy mea-
sured in DPS coupled with evolving DNS is the same as
the one in DPS coupled with a frozen flow for a wide
range of Stokes numbers.

In contrast, fig. 2 shows that the Lagrangian fluid
integral time scale seen by the particle measured in a
frozen flow deviates from the one in evolving DNS for
large Stokes number. The particles with a large Stokes
number experience the turbulent field as a motionless
observer. Then the time scale seen by the particles goes
to the Eulerian time scale which is nearly identical to
the eddy-life time that is infinite in frozen flows. This
effect is clearly shown in fig. 2 and it is seen that frozen
flow simulation (empty symbols) clearly overestimates
the Lagrangian fluid integral time scale seen by large
Stokes number particles.

Figure 1: Particle kinetic energy normalized by the fluid
kinetic energy measured at the particle position with re-
spect to the inverse of Stokes number measured along in-
ertial particle suspended in Homogeneous Isotropic Tur-
bulent flows. The black filled symbols are the evolving
DNS, the empty symbols the frozen flow and the solid
line the relations based on the theory of Tchen & Hinze
[1947].

Figure 2: Lagrangian fluid integral time scale seen by
the particle with respect to the inverse of Stokes number
measured along the path of inertial particles suspended in
Homogeneous Isotropic Turbulent flows. The black filled
symbols are the evolving DNS and the empty symbols the
frozen flow. The dashed line represents the semi-empiric
model by Wang & Stock [1993].

Therefore, frozen flows can be coupled with DPS, if
particle dispersion is investigated. However, care should
be taken for particles with larger Stokes numbers, as
the particle distribution could be modified and conse-
quently have an effect on the collision kernels or coales-
cence rates.
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Figure 3: Turbulent spectrum computed on staggered
grid. Top: DNS with Re=60 (1283 grid points) and bot-
tom: LES with Re= 819 (963 grid points). Solid lines are
the spectrum computed on fluid grid, •: linear scheme,
x: SFM and +: cubic splines.

2.3 Validation of particle trajectory computation

The key element for solving system (1) is the computa-
tion of the undisturbed fluid velocity at the particle po-
sition uf@p. As two-way coupling is neglected the fluid
velocity at the position of the particle is computed by in-
terpolating the turbulent fluid flow predictions obtained
by means of DNS [Balachandar & Maxey 1989]. As an
interpolation scheme is a filter, an inaccurate interpo-
lation scheme may change the physics of the two-phase
flow. The validation of the interpolation scheme is done
using a staggered grid. Therefore, the fluid flow is pre-
dicted by DNS (or LES) on a given uniform grid with
N3 grid points. Then the interpolation scheme is used
to compute the velocity field on a second uniform grid
staggered from the first one. For illustration, three inter-
polation schemes are used here: linear, Shape Function
Method (SFM) and cubic splines.

Figure 4: Error evaluation of the interpolation scheme.
Top: DNS with Re=60 (1283 grid points) and bottom:
LES with Re = 819 (963 grid points). Solid lines are
the spectrum computed on fluid grid, •: linear scheme,
x: SFM and +: cubic splines.

Two turbulent velocity fields are considered: first, a
flow field predicted by means of DNS on a grid with 1283

grid points and a turbulent Reynolds number Re=60.
Second, a flow field predicted by LES with 963 grid points
and turbulent Reynolds number Re=819. The first-order
evaluation of the interpolation scheme consists of com-
paring the moments of the fluid velocity computed for
both grids, the original and staggered one. The error of
the interpolation scheme is quantified by

Δq2f
q2f

= 100

[
q2f

]

DNS
−
[
q2f

]

Stag[
q2f

]

DNS

(7)

The error produced by the linear scheme is much more
important than the error given using by the SFM or cubic
spline scheme, as expected and seen in Tab. 1. Follow-
ing the results given in tab. 1, the question about the
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real value of a cubic spline scheme instead of SFM might
arise, as SFM already gives an error of the order of 0.05%
and is much more computational cost efficient compared
to the cubic spline scheme. To answer this question, fig.
3 compares the energy spectrum computed on the DNS
grid and on the staggered grid. It is observed that all
interpolation schemes modify the turbulent spectrum as
a filter. However the cubic spline gives a better represen-
tation of the small scales of turbulence. Fig. 4 shows the
difference between the spectra normalized by the integral
of the DNS spectrum given as

[κΔE(κ)]DNS − [κΔE(κ)]Stag[∫
κΔE(κ)dκ

]
DNS

= κΔE(κ)
q2f

. (8)

Figure 4 clearly shows that the cubic splines interpo-
lation scheme predicts better for the small scales of fluid
turbulence. This is a very important point. If only parti-
cle dispersion is studied, the SFM interpolation scheme
is probably sufficiently accurate. However, if particle-
particle collisions in homogeneous isotropic turbulence
are studied, the collision frequency in the limit case of
zero inertia but finite volume particles is controlled by
the local fluid velocity gradients (see Saffman & Turner
[1956]). In this case an inaccurate interpolation scheme
may lead to erroneous collision rates.

Linear SFM Cubic splines

Δq2f/q2f (%) Re=60 1.60 0.053 0.007
Re=819 2.90 0.24 0.05

Table 1: Error of the interpolation scheme on turbulent
kinetic energy.

2.4 Particle dispersion with mean slip
The settling of particles in a turbulent field is an impor-
tant complex phenomenon in multiphase flows. DPS is
a powerful tool to bring some answers about the physi-
cal mechanisms acting in particle-turbulence interaction
[Fessler et al. 1994, Février et al. 2005] or preferential
concentration [Squires & Eaton 1991]. However, Fede et
al. [2007] show that the periodical boundary conditions
may cause a statistical bias in DPS of inertial particles
falling in a homogeneous turbulence. Indeed, in such a
numerical simulation a particle that crosses an edge of
the computational domain is re-injected at the opposite
side.

Fede et al. [2007] show that when the particle resi-
dence time in the box is smaller than the turbulent eddy-
life time the particles may interact with nearly the same
fluid velocity field. Consequently the fluid velocities seen
by the particles are correlated with themselves inducing
a statistical bias. To illustrate this phenomenon fig. 5
shows the Lagrangian fluid velocity correlation function
measured along the solid particle path.

Figure 5 shows the fluid velocity correlation function
measured for two kinds of particles differing by the res-
idence time to Eddy-Life time ratio. The particle resi-
dence time can be defined as

τinbox = Lb
|Vset| = Lb

gτp
, (9)

where Lb is the computational box length and Vset is
the settling velocity Vset = τpg. As seen in fig. 5 peaks

appear in the Lagrangian correlation function for a small
value of τinbox/τE . It corresponds to a re-correlation
effect due to periodical boundary conditions. Fede et
al. [2007] proposed the limiting value of τinbox/τE > 4
to ensure that this statistical bias does not change the
particles behaviour.

Figure 5: Fluid velocity correlation seen by settling par-
ticles for τinbox/τE = 0.91 (solid line) and τinbox/τE =
4.34 (dashed line). The fluid integral time scale τf@p is
computed by integration of Rf@p (6).

3 Collision/Coalescence validation

If collisions or coalescence are taken into account in DPS
validation needs to be performed at two levels: first for
the collision or coalescence model (in terms of momen-
tum transfer) and second for the detection algorithm as
both are independent.

The collision algorithm is validated performing dry
granular flow simulations of mono- and bi-disperse par-
ticle mixtures. The results on a bi-disperse mixture,
which are comparing the statistics obtained in dry gran-
ular flows with predictions originating from the kinetic
theory of rarefied gases, can equally be considered as a
validation of the collision detection algorithm in a poly-
disperse particle mixture. As usually only binary colli-
sions are treated, a bi-disperse simulation validates the
case of a poly-disperse mixture. The validation is con-
ducted in dry granular flows as the statistical properties
that should represent the particulate system are known
from the theory of rarefied gases. It is therefore possible
to conduct simulation without the ‘disturbing influence’
of a fluid phase. All changes in the particle trajecto-
ries are exclusively related to particle-particle collisions.
This configuration of dry granular flows offers therefore
ideal conditions for the validation of the collision detec-
tion algorithm.

In this section we first introduce a detection algorithm
and a collision model. Second we present criteria in order
to validate the collision model and third the detection
algorithm. The last part is dedicated to the validation of
coalescence. It is emphasized that the validation criteria
do not dependent on the collision model or detection
algorithm.
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3.1 Particle detection and collision model
Several algorithms for the treatment of the dispersed
phase are found in literature [Hopkins & Louge 1990,
Sigurgeirsson et al. 2001, Sundaram & Collins 1997].
The simplest, but also an extremely inefficient way to
detect particle-particle collisions is checking for collision
between all possible particle pairs in the computation
domain. This way the cost of checking for collision is
Np(Np − 1)/2 and hence in the order of O(N2

p ). The
computation cost can be reduced by using a detection
grid. In Wunsch et al. [2008] a collision detection algo-
rithm for a polydisperse particulate phase is proposed.
This algorithm has two collision detection criteria, the
first is the standard overlap criterion, i.e. a collision be-
tween two particles is found by overlap of the particles
at a given time step. This kind of algorithm demands
a small time step in order to accurately predict the col-
lision frequency. Wunsch et al. [2008] show that the
introduction of a second criterion, which compares the
relative position of the colliding particles in two consec-
utive time steps increases the time step significantly.

The detection algorithm provides a list of colliding par-
ticles for which a collision or coalescence model has to be
applied. Assuming an instantaneous frictionless collision
of spherical solid particles, the particle velocities after a
collision are given by

v•p = vp + mq
mp+mq (1 + ec)(w.k)k;

v•q = vq − mp
mp+mq (1 + ec)(w.k)k, (10)

where w is the particle-particle relative velocity, k the
normalized unit vector connecting both particle centres
and mp the p-particle mass. The particle restitution co-
efficient ec represents the loss of particle energy during
the collision.

3.2 Collision model validation
The validation of the collision model is handled by per-
forming DPS of homogeneous granular flows. The par-
ticles are initially randomly distributed and the particle
velocity distribution becomes Gaussian due to the redis-
tribution effects of collisions as seen in fig. 6. In case of
monodisperse elastic particles (ec=1) the particle kinetic
energy is perfectly conserved. So the particle kinetic en-
ergy must be constant.

One of the main differences with a system of a mono-
disperse mixture is the fact that in a bi-disperse parti-
cle mixture the energy levels for each particle class are
not the same in the thermal equilibrium state. Heavier
particles do not show the same particle agitation in the
equilibrium state as lighter particles. This equilibrium
state of the particle agitation can be expressed by the
following relation

mpq
2
p = mqq2q (11)

If the particle collisions are elastic, the particle agita-
tion of the bi-disperse mixture q2m can be written as

q2m =
npmpq

2
p + nqmqq2q

npmp + nqmq
(12)

The relations (11) and (12) allow writing the particle
agitation for each class in function of the particle agita-
tion of the mixture

q2m =
npmpq

2
p + nqmqq2q

npmp + nqmq
and q2q = npmp + nqmq

mq (np + nq)
q2m.

(13)

Now, it is possible to find an expression for the ratio of
q2p/q

2
m and q2q/q2m, which only depends on the mass of the

particle classes mp and mq as well as on their number
densities nq and nq. The same values can be measured in
the DPS simulations. A comparison of the measured val-
ues to the predictions of the equilibrium theory is given
in fig.7. Figure 7 shows that the particle kinetic ener-
gies converge towards their respective theoretical values.
This is due to the transfer of particle kinetic energy by
collisions.

Note that the proposed validation of the collision
model is independent of the collision detection algorithm.
Indeed the detection algorithm gives the number of colli-
sion, in other word the collision frequency. Then even if
the collision frequency is wrong the relation (13) remains
correct. The difference is the time needed to reach the
equilibrium (11).

Figure 6: Particle velocity distribution. Gaussian distri-
bution with mean μ = 0 and σ = 0.284 (Solid line), �:
x-component, �: y-component, ◦: z-component.

Figure 7: Comparison of particle kinetic energy ratios
measured in DPS to predictions from the equilibrium the-
ory (13).
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3.3 Collision detection algorithm
The validation of the detection algorithm is mainly re-
lated to the collision frequency and consequently with
the time step of the simulation. To evaluate the collision
detection algorithm the relevant parameter is the mean
particle displacement during a time step δl. For a mean
displacement larger than the particle diameter collision
missing is expected. In the frame of the kinetic theory of
rarefied gases applied to granular media, the mean par-
ticle displacement during a time step normalized by the
particle diameter is expressed as

δl

dp
= 3

2

√
2π
3
q2p

Δt
dp
. (14)

Distributions of collision angleNθ and relative velocity
at the moment of collision Nwpq are used to quantify the
efficiency of the collision algorithm. The kinetic theory
provides the following theoretical relations

f (θ) = −4n2
pd

2
p

√
2π
3
q2p sin (2θ) (15)

and

f (wpq) = n2
pd

2
p

√
2π
3
q2p

9
8q2p

w3
pq exp

(

−3w2
pq

8q2p

)

(16)

The accuracy of the predictions with respect to the
time step criterion δl/dp is shown in fig.8 and fig.9.

As clearly seen in fig.8 and fig.9 a sufficient algorithm
performance is achieved when the particle propagation
is limited to about 13% of a particle diameter, thus for
a ratio δl/dp = 0.13. Similar results are obtained by
Sakiz [1999]. For ratios δl/dp larger than this value the
simulation results deviate from the prediction based on
the kinetic theory of rarefied gases and especially grazing
collision are missed. In dependence of the flow configu-
ration in DNS/DPS simulations of turbulent two-phase
flows the criterion δl/dp can be more stringent than the
CFL number of the DNS, which is disadvantageous as the
DNS of the continuous phase then needs to be solved
applying a time step which is not optimal. In fig.9 it
is seen that with an increasing ratio of δl/dp more and
more particle-particle collisions are missed between par-
ticles with a high relative velocity. This appears logic
as faster particles cover a larger distance during a fixed
time step than slower ones. Consequently fig.8 shows
that the grazing collisions are more sensitive to a higher
ratio of δl/dp. To remedy this restriction in the time
step criterion a second particle pair detection criterion is
introduced in the algorithm developed in Wunsch et al.
[2008]. In practice, this criterion is a significant advan-
tage as the time step criterion on the dispersed phase is
still more stringent than the one on the fluid phase and
therefore corresponds to a net increase of the time step
by a factor of ten.

Representing correctly the relative velocity and colli-
sion angle distributions is not sufficient for the validation
of the detection algorithm. If for example a systematic
error in the detection algorithm persists that affects ran-
dom particles, the distribution PDF’s exhibit a correct
behaviour, but the collision frequency is not correctly
represented. A correct prediction of the collision fre-
quency is crucial. It is the most important statistic of
the dispersed phase. The influence of collisions on any
quantity is written as the change in the quantity by the
collision multiplied with the collision frequency. There-
fore, the collision frequency measured is compared to the

predictions of the theoretical collision frequency. For a
binary mixture of particles the kinetic theory gives the
following relation for the collision frequency

fκpq = g0npnqπ
(
dp + dq

2

)2√ 16
3π
(
q2p + q2q

)
, (17)

where g0 is radial distribution function introduced to
take into account the increase of collision frequency due
to particle packing. In diluted granular flows the radial
distribution function is nearly equal to 1 but for dense
flows g0 depends on the particle volume fraction αp [Car-
nahan & Starling 1969, Lun & Savage 1986].

As can be seen in fig.10 the DPS results correspond
very well with the theoretical predictions for the colli-
sion frequency corrected by the model for the radial dis-
tribution function of Carnahan & Starling [1969]. Thus,
it is verified that the collision frequency is correctly pre-
dicted.

Figure 8: Collision angle PDF in dependence on ratio
δl/dp using a pure overlap detection algorithm. The sym-
bols stand for �:0.13, �:1.3, ◦:1.9 and the solid line the
prediction given by (11).

Figure 9: Impact relative velocity PDF dependence on
ratio δl/dp using a pure overlap detection algorithm. Thy
symbols stand for �:0.13, �:1.3, ◦:1.9 and the solid line
the prediction given by (11).
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Figure 10: Comparison of radial distribution function g0
measured in DPS to theoretical predictions with respect
to the particle volume fraction αp.

Figure 11: Comparison of measured impact parameter X
in dry coalescence to predictions from theory.

Figure 12: Particle number measured in DPS in compar-
ison with Monte-Carlo simulations in dry coalescence.

Figure 13: Droplet number Np measured in DPS in com-
parison with predictions from Monte-Carlo simulations
comparing vectorized and non-vectorized versions of the
code on different platforms.

3.4 Coalescence
The collision of liquid droplets can lead to different col-
lision outcomes, such as droplet rebound, permanent co-
alescence, reflexive or stretching separation. These col-
lisions regimes can be described in terms of the Weber
number We, which is the ratio of droplet inertia to sur-
face tension, and the impact parameter X , which is a
geometrical quantity. X-We diagrams are known from
experimental studies [Ashgriz & Poo 1990; Qian & Law
1997]. The droplet pair detection in case of other col-
lision outcomes than rebounds, such as the above men-
tioned, remains the same and only the droplet collision
handling is altered.

Coalescence phenomena are modelled representing a
pure coalescence regime only for the sake of distinctness.
This means that each collision leads to permanent coa-
lescence and no other collision outcomes exist. Moreover,
the coalescence handling is validated in a dry coales-
cence regime, which means that only the disperse phase
is present, such that there is no influence of a fluid on the
droplet interaction. Permanent coalescence is modelled
applying mass and momentum conservation

m∗ = mp +mq, m∗ = mpvp +mqvq (18)

with mp and mq the mass of the particles before coales-
cence and m∗ after. Analogous for the particle velocities
vp, vq and v∗. The corresponding particle diameter is
directly deductible from the mass conservation equations
as the particle density is constant and the particles are
modelled as rigid spheres. The position of the new par-
ticle that arises from coalescence is given as

x∗ =
d3pxp + d3qxq
d∗3

(19)

with x∗ the position of the new particle and dp, dq and
d∗ the particle diameters.

It is possible to determine a theoretical probability
density function (PDF) for both the Weber number and
the impact parameter. For the purposes of this article,
only the PDF of the impact parameter is regarded. A
correct prediction of the Weber number and impact pa-
rameter is necessary for the determination of the droplet
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collision regime, if more than a pure coalescence regime
is taken into account. The prediction of the collision
regime is crucial to the correct prediction of droplet size
distribution and coalescence rate, especially if the forma-
tion of satellite droplets is accounted for. A distribution
function is derived for the impact parameter X [Wunsch
2009], which is a purely geometrical quantity and can be
calculated as a function of the collision angle PDF given
in (11). It can be written as

N (X)dX = Nθ (θ) dθ. (20)

This leads to

NX (X) = Nθ (θ)∣
∣dX
dθ

∣
∣ . (21)

With some manipulations, respecting the relation be-
tween the collision angle and impact parameter, this
equation can be transformed applying trigonometric
rules in the interval θ ∈ [π2 ;π

]
, which is the interval

of collision angles as it is defined here. It writes then

NX (θ) = 2 sin (θ) , (22)

which, expressed in terms of the impact parameter and
applying θ = π − arcsin (X), gives the final form for the
PDF of the impact parameter as

NX (θ) = 2X. (23)

The PDF of the impact parameter therefore describes a
straight line through the origin. A comparison with mea-
surements from DPS on a dry permanent coalescence
flow is given in fig.11. The statistics verify this theo-
retical prediction of the impact parameter, although the
statistics are moderate, which is due to the lack of events
that can be taken into consideration.

The number of particles finds its maximum at the be-
ginning of the simulation and decreases then with each
single collision in the simulations performed here. There-
fore, collisions are limited in number.

Measures of the coalescence rate in DPS simulations
of dry coalescence, where permanent coalescence is the
only possible collision outcome, are compared to pre-
dictions of Monte-Carlo simulations. These simulations
are considered to be exact in dry granular flows and
a correct measure of the coalescence rate and particle
kinetic energy in the system is qualified by agreement
with the Monte-Carlo predictions. The algorithm used
is of Babovsky type [Babovsky 1986], where numeri-
cal particles represent a given number of real particles.
These numerical particles are first grouped in Np/2 pairs
((Np − 1)/2 in case Np is odd). Second, the collision
probability for each pair is calculated, based on the par-
ticle properties and third, a random number is created
and compared with the collision probability in order to
decide, whether a collision takes place or not. The co-
alescence rate is presented in the following and then,
the algorithm is validated on different platforms, using
the DPS predictions in comparison with predictions of
Monte-Carlo simulations.

The initialization of the Monte-Carlo simulations is
done with an underlying fluid flow field which brings the
particulate phase into a stationary state. At the moment
coalescence is started the fluid flow is turned off and
thus the configuration of dry granular flows is produced.
Figure 12 shows that the particle number (and therefore
the coalescence rate) is correctly represented.

The collision detection algorithm and collision treat-
ment is integrated into the DNS solver and adapted to

its structure. Then, the algorithm is vectorized due to
the vectorial structure of the NEC-SX-8 on which the
DNS/DPS simulations were performed. Obviously a re-
validation is necessary in order to assure not to introduce
errors by these modifications. Besides the validations
presented above, while validating the collision algorithm,
also the coalescence rate and particle kinetic energy on
different platforms are compared. The results are pre-
sented in fig.13. It is seen that the particle number as
well as the particle kinetic energy are well represented
and coincide with predictions on other platforms.

4 Conclusions
Several validation procedures for Discrete Particle Sim-
ulation of turbulent two-phase flows with droplet coales-
cence are proposed. First, restrictions of the coupling of
DPS with DNS or LES are discussed, showing first limits
for turbulent Reynolds number, in respect of computa-
tional cost for DNS and in terms of accuracy for LES
and second for the high number of droplets for which
a frozen DNS needs to be applied. Then a validation
procedure for particle-particle collisions or droplet coa-
lescence is presented. First discussing the correct predic-
tion of fluid properties at the particle position and then
validating the collision handling. The collision handling
consists of first, validating the collision model and second
the collision detection algorithm. The particle energies
and PDFs of collision statistics are used to verify a cor-
rect collision handling. Finally, the modelling of droplet
coalescence is validated in comparison with Monte-Carlo
type simulations which are considered as accurate in dry
granular flows.
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1 Introduction

The prediction of turbulent particle dispersion is impor-
tant for many technical and natural processes. How-
ever, an accurate and generally accepted model has not
been developed yet and different model predictions of
particle dispersion in complex non-isotropic and non-
homogeneous flows may differ substantially. Hence,
models which are based on physically correct assump-
tions for the flow turbulence and still can be implemented
with reasonable effort are needed.

This paper describes calculations of particle dispersion
in a turbulent two-phase free shear layer based on the Eu-
ler/Lagrange approach using a standard k-ε turbulence
model for closure of the gas phase. The purpose of this
work is to test a generalized Langevin equation model
(GLE) for the turbulent carrier fluid velocities seen by
the particles, which accounts for anisotropy by consid-
ering Reynolds stress gradients, local velocity gradients
and time scale differences for different directions (see
Minier & Peirano, 2001). Melheim et al. (2005) pre-
sented calculations of particle dispersion in a shear layer
using this GLE model and focussed on the discussion of
the particle concentration profile, particle velocity profile
and shear stress profiles of particles and fluid seen by the
particles at one stream-wise position and for one particle
size. The current paper extends this work and discusses
in more detail the particle dispersion mechanism and its
implication on particle concentration profiles and their
velocities.

2 The test case

As a test case, a shear layer flow was chosen, since it
is well understood for the single-phase case while be-
ing a non-homogeneous and non-isotropic turbulent flow.
Measurements of particle dispersion of this type of flow
are available in Hishida et al. (1992), where gravity was
in flow direction, Wen et al. (1992) with gravity pointing
from the high speed side towards the low speed side, and
Chang et al. (1993) with gravity in stream-wise direc-
tion. Lazaro & Lasheras (1992), Hardalupas & Horender
(2003) and Horender & Hardalupas (2009) measured par-
ticle characteristics in a shear layer where gravity pointed
from the low speed to the high speed side. The origin of
the coordinate system was chosen so that the end of the
splitter plate was at stream-wise position x=0 and cross-
stream position y=0. The fluid velocity was 0.8m/s on
the low speed side and 5.5m/s on the high speed side.
The inlet conditions were the velocity profile as mea-
sured at the end of the splitter plate. Fig. 1 shows a
vector plot of the velocity field and the different spacing

between velocity vectors shows the non-uniform resolu-
tion of the computational grid, which was necessary to
resolve properly the inlet profile.

Nearly mono-dispersed glass beads of density
2590kg/m3 with mean diameters of 90 microns were
injected through a pipe with inner diameter 5mm
just above the splitter plate. The particles had a free
fall velocity of 0.058m/s. The particle feeding rate
was 0.55g/s leading to a local maximum mean mass
loading of approximately 12% and the air flow velocity
through the injection pipe was approximately 3m/s.
The particles were injected with a mean velocity of
2.7m/s. The rms velocity for the stream-wise particle
velocity component was 0.3m/s and the cross-stream
velocity fluctuations were set to 0.25m/s with a Gaus-
sian distribution according to the experiment. The
flow developed large scale vortex structures which grow
with stream-wise development (Horender & Hardalupas,
2009). The Stokes numbers, defined as the ratio of par-
ticle relaxation time scale to vortex time scale (obtained
with the shear layer thickness,) is 2.3 at stream-wise
position x=300mm. Hence, particle centrifuging by
the large scale fluid eddies was the main dispersion
mechanism.

Figure 1: Vector plot of the fluid velocity field.

3 Flow computation and dispersion model
The steady fluid flow was computed by a standard 3D
finite volume code (FASTEST4.0) using a k-ε model for
turbulence closure. Details can be found in Melheim et
al. (2005) and therefore are not reported here. However,
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it should be noted that the Reynolds stresses and their
gradients were reconstructed from the flow field by the
eddy viscosity hypothesis. The particles were tracked
with the Lagrangian approach using the software Lag3D
considering only drag force and gravity. Two-way cou-
pling has been neglected here. It should be noted that
the fluid velocity is denoted by u and the particle veloc-
ities by v and capital letters are mean quantities, small
letters are the instantaneous velocities and dashed let-
ters the rms values of the fluctuating quantities. Index
1 denotes the x-axis which is pointing in stream-wise di-
rection and index 2 is the cross-stream component.

For the GLE model, the instantaneous fluctuating
fluid velocity seen by the particles is modelled in terms
of its acceleration as:

dui =
(
−uj ∂Ui∂xj + ∂uiuj

∂xj
+
(
V̄j − Ūj

)
∂Ūi
∂xj
− 1
TL
Hijui

)
dt

+Bijξi
(1)

Here, Hij is a generalisation of the drift matrix for
arbitrary mean slip between the flow phases, Bij is the
diffusion matrix and ξi is a Gaussian random process. It
should be noted that the mean particle velocity appears
in the third term on the r.h.s. of this model equation.
Therefore, 100.000 parcels were tracked through the flow,
representing many identical real particles to achieve the
actual particle number density in the flow, for 8 itera-
tions. The mean particle velocity in eq. (1) always was
derived from the previous run and updated for the sub-
sequent calculation.

The Lagrangian time scale is defined as:

TL =
1

( 1
2 + 3

4C0
)
ε
k

(2)

The constant C0=2.1 and bi are the Csanady factors,
defined in Minier & Peirano (2001) and Melheim et al.
(2005):

bi = b⊥ + (b= − b⊥) (Vi − Ui)2

∣
∣
∣�V − �U

∣
∣
∣
2 (3)
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(4)
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⎝1 + 4β2
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∣
∣�V − �U

∣
∣
∣

2k/3

⎞

⎠

0.5

(5)

Here, β is the ratio of Lagrangian to Eulerian time
scale with β = 1/CL and with CL = 1.1. This choice is
applied for the current work since it is commonly used,
however it deviates from eq. (12) and will be discussed
below.

The matrix Hij in the drift term of eq. (1) is defined
as:

Hi,j = b⊥δij + (b= − b⊥) rirj (6)

With ri being the unit vector in direction of the mean
slip between fluid and particles. The diffusion matrix
Bij is defined as:

(
BBT
)
ij

= Dij (7)

With

Dij = ε
(
C0λHij +

2
3

(λHij − δij)
)

(8)

and λ defined as:

λ = 3Tr (HijRij) / (2kTr (Hij)) (9)
Here, Tr denotes the trace of the matrix and Rij is

the Reynolds stress tensor of the fluid.
With the above equations the model for the fluid ve-

locity seen by the particles is closed and the change of
particle velocity due to aerodynamic drag was then cal-
culated according to:

d�V

dt
=

3ρf
4ρpdp

24
Rep
(
1 + 0.15Re0.687

p

)·
(
�V − �U

) ∣∣
∣�V − �U

∣
∣
∣+�g

(10)
Rep is the Reynolds number defined based in the parti-
cle diameter dp and the gas viscosity. ρp is the particle
density and ρf the fluid density.

Particle collisions were model according to the stochas-
tic iterative scheme of Sommerfeld (2001). Therefore, as
described above, 8 iterations with 100.000 parcel tracks
each were performed and the particle properties for the
collisions, which are number density and mean as well
as fluctuating velocities, were deduced from the previous
run. However, it should be noted that for stream-wise
positions larger 100mm only 15% of the particles expe-
rienced collisions. Only close to the injection collisions
were relevant for particles dispersion, and hence, colli-
sions will not be further discussed in this manuscript.

4 Results
Figure 2 presents the calculated mean and fluctuating
carrier gas velocities as cross-stream profiles for stream-
wise positions 10, 100 and 300mm. The measured values
are also presented. Regarding the smallest stream-wise
position it should be noted that in the simulations the
air flow trough the particle injection pipe was consid-
ered, while for the experiments at that position it had
been switched off. The larger positions were with air jet
for both simulations and experiments. Some deviations
exist on the high speed (lower) side, which may be at-
tributed to the fact that the boundary layer below the
splitter plate has not been properly resolved by the nu-
meric grid. For the larger stream-wise positions, fig. 2
(b) and (c) this deviation is reduced. However, some
discrepancies remained, especially the deviation from a
clean shear layer profile for stream-wise position x=100
mm and cross-stream position y=10mm was found in the
experiments. The reason might be that the injecting pipe
diameter was only resolved by three computational cells
and hence the developing jet disappeared faster in the
simulations due to numerical diffusion compared to the
experiment. Hence, for highly accurate simulations the
grid must be finer at the particle injection pipe. How-
ever, it is expected that the effect on the particles is
small, since they have Stokes number much larger than
one at the injection position and, as a consequence, are
unable to be accelerated noticeably close to the injection
position. The main influence of the gas flow on the par-
ticles occurred further down-stream, when their Stokes
number becomes of the order of unity and the large scale
fluid vortices mainly influence the particles. The pre-
dicted velocity fluctuations (Fig. 2 - dashed line) agree
well on the high speed side (y<0) but show too small val-
ues for cross-stream positions y>0 for stream-wise posi-
tion x=100 mm and for cross-stream positions y>20 mm
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for x=300 mm. This again might be an effect due to the
air flow through the particle injection pipe.

The integral time scale is an important parameter in
the equation for the velocity seen by the particles. It has
been deduced from the k-ε turbulence model as

TL = 0.24
2/3k
ε

(11)

and compared with measurements of the Eulerian au-
tocorrelation function of the fluctuating stream-wise ve-
locity. The simulations resulted in TL on the centre line
(y=0) for stream-wise positions 100, 300 and 500mm of
4.8ms, 7.8ms and 10.7ms. The measured Eulerian auto-
correlation functions at the same stream-wise positions,
see Horender (2002) fig. 11, have their first zero cross-
ings at t=6, 11 and 26ms. The deduced Eulerian integral
time scale are then approximately 1.5, 3.0 and 6.0ms.
McComb (1999, p. 445) reviewed earlier work and sug-
gested the ratio of Lagrangian to Eulerian integral time
scale as:

β =
0.44Ū
u′

(12)

For a shear layer this leads to β ≈ 1.9 on the centre
line, which is in approximate agreement with the above
estimates.

Fig. 3 shows the measured and predicted mean parti-
cle concentrations at different stream-wise positions. It
should be noted that the concentrations are all normal-
ized by their maximum cross-stream value and that a
calculation with the particles seeing only the mean gas
flow was performed and is denoted as ‘laminar’ simu-
lation. The figure shows that for the smallest stream-
wise position the simulated particle concentrations agree
well with the measurements. For the larger positions
x=300 and 380mm some deviations exist on the upper
low speed side. Here the model predicts a too large dis-
persion against gravity towards the low speed side, while
the simulations agree well with the measurements on the
high speed side (y<0). The laminar calculations were
performed to clarify the influence of the velocity distribu-
tion of the particles at the injection position on the down-
stream dispersion pattern. Clearly, the particles disperse
much less upward with stream-wise development com-
pared to the turbulent simulation. Additionally, there is
a stronger downward drift when turbulence is not con-
sidered. This becomes most pronounced for cross-stream
positions y<-30mm. For the largest stream-wise posi-
tion x=380mm, the laminar simulations predicts well
the measured values, however this is believed to happen
to due neglecting several effects, which may cancel each
other at exactly this position. Hence, in the following we
will focus on the predictions of the turbulent dispersion
model and try to identify reasons for the deviation from
the measured profiles.

An explanation for the predicted too large dispersion
of the turbulent calculations on the upper low speed side
of the flow may be as follows. First, as shown in Fig. 2,
the fluid velocity fluctuations for y>20mm are predicted
too small by the calculations, which might, however, lead
to smaller dispersion. This might not be so important for
the current flow situation, since the particle concentra-
tion at that cross-stream position was small due to grav-
ity. The reason for the over-prediction of dispersion on
the upper side of the shear flow may be related to particle
clustering due to the fluid vortex structure. Horender &
Hardalupas (2010) used a point vortex method to simu-
late the large scale vortex structure in a two-dimensional
shear layer, which was similar to the current one, and

tracked particles, also with 90 m in diameter, through
the flow field. They obtained probability density func-
tions of the fluctuating carrier fluid velocities as seen
by the particles and compared them with the Eulerian
ones. They found that the particles on the lower (high)
speed side viewed fluid velocity PDFs which were only
slightly less broad compared to the Eulerian ones. How-
ever, on the centre line of the flow and on the low speed
side (y>0), the viewed velocity fluctuations at stream-
wise position x=300 mm were reduced by approximately
30% compared to the Eulerian value for the 90 micron
particles, which had Stokes number between 2.6 and 4.5
based on the larger scale fluid vortices (not on the in-
tegral time scales). On the high speed side this effect
was also present, however the reduction of the seen fluid
velocity fluctuations were less than approximately 10%.
Additionally, Horender & Hardalupas (2010) tracked 55
micron particles, with Stokes numbers ranging from 1.0
to 1.7, for which a stronger degree of preferential con-
centration was observed. These smaller particles showed
even stronger reduced seen velocity fluctuations of the
carrier fluid. Although the simulations by Horender &
Hardalupas (2010) were two-dimensional, they should
capture the main dispersion mechanism in a developing
shear layer, which is pairing of the fluid vortices. Hence,
considering their results on the reduction of the carrier
fluid velocity fluctuations viewed by the particles due to
particle clustering may be the reason that in the exper-
iment dispersion towards the low speed side is reduced.
This must be clarified by future calculations taking parti-
cle clustering effects into account. To further investigate
the ability of the suggested model for the fluid velocity
seen by the particle we will discuss the resulting particle
mean velocities and compare them with measurements of
Hardalupas & Horender (2003) and Horender & Hardalu-
pas (2009).

Figure 4 shows the predicted mean particle veloci-
ties in stream-wise and cross-stream directions again for
stream-wise positions x=220, 300 and 380mm for the
laminar and turbulent case and the experiments. It is ob-
served that the mean cross-stream velocity V2 generally is
predicted well, only for the smallest stream-wise position
it is slightly over predicted. This is in agreement with
the over prediction of mean particle concentration on the
upper low speed side, since particle moving towards pos-
itive y values must have a positive mean velocity. The
possible reason for that was explained above. The mean
stream-wise particle velocity V1 also is over-predicted on
the upper low speed side. The reason for that cannot be
the small differences in the predicted mean fluid velocity
(see Fig. 2), since they were predicted too small, which
should lead to smaller predicted particle mean velocities
compared to the measurements. The reason, however,
might again be the dispersion, which was predicted too
large towards the upper part of low speed side, resulting
in particles being present on the low speed side origi-
nating from the high speed side with large stream-wise
velocity. However, this may not explain why the particles
move faster in the simulations also on the high speed side
(y=-30 to 0). Therefore, future research should clarify
whether there are spurious effects present in the model
equation (1). Also, it must be quantified how well the
stochastic model can describe the role of the unsteady
pairing fluid vortices on particle dispersion.

Since the particle fluctuating velocities are an impor-
tant quantity resulting from the dispersion model, for
example for the calculation of collision rates, Fig. 5
presents the calculated rms of the particle velocity fluc-
tuations for the laminar and the turbulent tracking to-
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gether with measurements. Generally, the laminar simu-
lations show much smaller fluctuations of the particle ve-
locities, especially for the cross-stream component these
are nearly zero. The turbulent simulations capture the
main trends of the measured particle velocity fluctua-
tions. However, the absolute values of the fluctuations of
particle velocities are larger in the simulations compared
to the experiments by up to approximately 30-50%, de-
pending on position. Two reasons could be responsible
for that, first a PIV algorithm was used to measure the
particle velocities, hence around 3 to 8 particle velocities
were average in one interrogation window, which may
suppress extreme velocity events of single particles lead-
ing to a smaller measured rms velocity. Second, due to
preferential particle concentration the velocity fluctua-
tions of the carrier fluid viewed by the particles were re-
duced as described before. This might also led to smaller
particle velocity fluctuations and has not been taken into
account. The simulation predicted larger fluctuations on
the low speed side (y>0) compared to the high speed
side (y<0) and the fluctuation levels are approximately
a factor of two larger for the stream-wise compared to
the cross-stream velocity component.

5 Conclusions
A particle-laden shear layer was calculated by using a
standard k-ε turbulence model for the gas flow phase.
Lagrangian particle tracking with a Langevin equation
model for turbulent dispersion was applied to simulate a
particle flow dispersing in the shear flow. Two-way cou-
pling was neglected. The results in terms of profile of
mean particle concentration and mean and rms of fluc-
tuations of particle velocities in stream-wise and cross-
stream direction were compared with measured values.
The following conclusions could be drawn from the per-
formed simulations:

• For the particles with a mean diameter of 90 micron
and a Stokes number of 2.3 the dispersion model
agreed well with the experiments on the high speed
side. On the top side with the low fluid velocity,
dispersion was over-predicted at the larger stream-
wise positions investigated. This could be related to
the enhanced clustering of the particles, since their
Stokes number was close to unity. As a consequence
they might ‘see’ reduced fluid velocity fluctuations
in the real flow (Horender & Hardalupas, 2010).

• The mean cross-stream velocity agreed satisfacto-
rily with the experiments, however, the mean parti-
cle velocity in stream-wise direction showed devia-
tions from the experiments. This point needs to be
addressed in future research dealing with improved
diffusion and drift coefficients for the Langevin equa-
tion model of Eq. (1).

• The trends of the fluctuating particle velocities were
captured well by the dispersion model, however their
levels were over-predicted by approximately 30%.
The particle velocity fluctuations were larger on the
low speed side compared to the high speed side and
the fluctuations of the stream-wise component were
approximately twice as large as the fluctuations of
the cross-stream component.
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Figure 2: Simulated and measured mean and fluctuating gas velocities in the shear layer flow for stream-wise distance
(a) 10mm, (b) 100mm and (c) 300mm.

Figure 3: Simulated and measured mean particle concentration profiles for stream-wise positions (a) 220mm, (b)
300mm and (c) 380mm. (open circle: experiment, closed line: turbulent particle tracking, dashed line: laminar
particle tracking).

Figure 4: Mean of stream-wise and cross-stream particle velocities for positions (a) 220mm, (b) 300mm and (c)
380mm. (open circle: experiment, closed line: turbulent particle tracking, dashed line: laminar particle tracking).
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Figure 5: RMS values of the stream-wise and cross-stream particle velocities for stream-wise positions (a) 220mm,
(b) 300mm and (c) 380mm. (open circle: experiment, closed line: turbulent particle tracking, dashed line: laminar
particle tracking).
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1 Introduction

Non-spherical particles are found in most industrial par-
ticulate flows. However, the vast majority of scientific
investigations of particulate flows assume particles to be
perfect spheres. For irregular, near spherical particles
modification to the drag coefficient using shape factors
can be applied, but these becomes increasingly inaccu-
rate at increasing aspect ratios. Non-spherical particles
at Re>100 are associated with significant secondary mo-
tion which also can affect the primary motion of the
particle. This entitles an altogether different method-
ology, where also the orientation of the particle should
be considered. This paper attempts to give an account
of the present state of modeling the motion of large non-
spherical particles. The relevance of this paper also be-
comes evident considering the increasing efforts towards
the replacement of pulverized coal with biomass in ex-
isting and new power plants. Whereas pulverized coal
particles are small and the spherical ideal is considered
a good approximation, pulverized biomass particles can
be characterized as being large and with high aspect ra-
tios due to their fibrous nature. This investigation is
limited to the Eulerian-Lagrangian methodology and to
solid non-deforming particles in Newtonian fluids.

2 Equations of motion

Whether spherical or non-spherical, regular or irregular,
the motion of particles is derived by considering the con-
servation of linear and angular momentum. In differen-
tial form the equations can be stated as:

d�x

dt
= �up, mp

d�up
dt

=
∑

i

�Fi (1)

d�θ

dt
= �ωp, �Ip

d�ωp
dt

=
∑

i

�Ti (2)

where x is the position vector, up is the particle linear
velocity, mp is the particle mass, F is the force acting
on the particle, θ is the angle between the principle axis
of the particle and the inertial coordinate system, ωp
is the angular velocity, Ip is the moment of inertia and
T is the torque acting on the particle. Where eq. (1)
deals with the location and linear velocity of the par-
ticle, eq. (2) is responsible for the orientation and the
angular velocity. Eq. (1) and (2) nicely demonstrate
the similarity between translational and rotational mo-
tion. However, these equations are only strictly correct
for a particle which is symmetric around the center of
mass (a sphere). For a generic non-spherical particle it
is necessary to include additional terms which address
the difference of the moment of inertia in the different
directions:

Ix′
dωx′
dt =

∑
Tx′,i + ωy′ωz′ (Iy′ − Iz′)

Iy′
dωy′
dt =

∑
Ty′,i + ωz′ωx′ (Iz′ − Ix′)

Iz′
dωz′
dt =

∑
Tz′,i + ωx′ωy′ (Ix′ − Iy′)

(3)

Generally, the particle translation is evaluated in the
inertial coordinate system whereas the particle rotation
is evaluated in the co-rotational coordinate system as
seen in Figure 1.

Figure 1: The inertial (x, y, z), the co-rotational
(x′, y′, z′) and the co-moving (x”, y”, z”) coordinate sys-
tems.

Figure 2: Euler angles: N=plane(x′, y′)∩ plane(x′′, y′′).

The transformation between the co-moving and the
co-rotational coordinates is accomplished by means of a
transformation matrix, A [1]:

�x′ = A�x′′ (4)
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where the elements in A represent the directional cosines
of the angles [θ, φ, ψ] between the principle axis of the co-
rotational and the co-moving coordinate system as seen
in Figure 2. These angles are also known as the Euler an-
gles. However, these angles are not suitable for particles
which undergo full rotation due to a singularity which
occurs when they are used in relation to the angular ve-
locities of the particle. Instead Euler’s four parameters
[ε1, ε2, ε3, η], which are also known as quaternions, are
used. The four Euler parameters represent an expansion
of the three Euler angles to eliminate the singularity. The
transformation matrix, A, using the Euler parameters is
given as [2]:

⎡

⎣
1− 2

(
ε22 + ε23

)
2 (ε2ε1 + ε3η) 2 (ε1ε3 − ε2η)

2 (ε2ε1 − ε3η) 1− 2
(
ε23 + ε21

)
2 (ε3ε2 + ε1η)

2 (ε1ε3 + ε2η) 2 (ε3ε2 − ε1η) 1− 2
(
ε21 + ε22

)

⎤

⎦

(5)
Where the Euler parameters are related to the Euler an-
gles by the following relations:

ε1 = cos φ−ψ2 sin θ2 , ε2 = sin φ−ψ2 sin θ2 ,
ε3 = sin φ−ψ2 cos θ2 , η = cos φ−ψ2 cos θ2

(6)

and the time rate of change of the Euler parameters is
calculated by:

⎡

⎢
⎢
⎣

dε1
dt
dε2
dt
dε3
dt
dη
dt

⎤

⎥
⎥
⎦ =

1
2

⎡

⎢
⎣

ηωx′ − ε1ωy′ + ε2ωz′
ε3ωx′ + ηωy′ − ε1ωz′
−ε2ωx′ + ε1ωy′ + ηωz′
−ε1ωx′ − ε2ωy′ − ε3ωz′

⎤

⎥
⎦ (7)

Similar to that most studies involving particles assume
a spherical shape, most studies involving non-spherical
particles assumes Stokes flow. For a non-spherical parti-
cle in Stokes flow it is possible to derive the steady states
resistance force and torque which act on the particle on
a theoretical basis [3]. However, unsteady forces, such
as virtual mass and Basset history force remain to be
formulated for non-spherical particles. The main diffi-
culty seems to be the coupling of the unsteady terms
with the orientation of the particle. One study tried to
derive the full equated motion for creeping flow by sim-
plifying the problem. As such, Lawrence and Weinbaum
[4],[5] conducted a study on a slightly eccentric ellipsoid
of revolution with major semi-axis b = a(1 + ε), in os-
cillatory cross flow, where only translational motion was
considered. In addition to relevant expansions of the
steady state, virtual mass and Basset force a new time
dependent term emerged related to the eccentricity. This
shows the magnitude of the awaiting challenge and sug-
gests that BBO-equation perhaps only is an asymptotic
solution for a more general formulation as the shape goes
towards complete symmetry around the center of geom-
etry. When considering non-spherical particles in Stokes
flow especially the work by Fan and Ahmadi [6],[7] should
be accentuated. There a complete formulation of the re-
sistance forces as well as shear induced lift can be found
along with a discussion of the importance of the individ-
ual terms.

For non-spherical particles at higher Reynolds num-
bers, appropriate expansions could be obtained by in-
cluding empirical coefficients in front of the force and
torques. However, it is also necessary to account for the
offset of the center of pressure in relation to the center
of geometry, xcp, as seen in Figure 3.

Figure 3: The location of the center of pressure, the incli-
nation angle α and the resulting forces acting on a falling
non-spherical particle.

The pressure distribution on the surface of a particle
inclined to the flow direction does no longer follow the
symmetry of that particle. This gives rise to an addi-
tional lift force as well as an addition torque due to the
displacement of the center of pressure. Besides this, the
main complication when considering non-spherical par-
ticles is the endless variations of the shape of the par-
ticle. To combat this, most investigations include some
sort of parameter variation in the formulation of forces
and torques. The most popular being the ellipsoid of
revolution which can be used to resemble a large array
of different shapes including flake-like particles and rod-
like particles. A distinctive advantage of the ellipsoid
of revolution is that it has no sharp edges which in a
mathematical analysis would be seen as discontinuities.

3 Orientation dependent drag
With regards to the drag force the main advantage for
an orientation dependent calculation method is that the
drag is calculated on basis of the projected area, evalu-
ated at the present orientation of the particle:

�FDrag = 1
2
CDρAp |�u− �up| (�u− �up) (8)

The challenge, with regards to the drag force, is the
proper formulation of the drag coefficient which is appli-
cable for a large range of Reynolds numbers, shapes and
orientations. It has become common practice to procure
empirical fits at a range of Reynolds number for a specific
shape. Some fits also includes a parametric variation of
the shape e.g. the aspect ratio of a cylinder or a spheroid.
However, these expressions are usually based on either a
fixed orientation or a freely falling particle. Thus, corre-
lations of the drag coefficient, which consider the incli-
nation angle, are not widely available. Two approaches
have been proposed to address this predicament: The
work of Rosendahl [8] suggests using a ’blending’ func-
tion between the drag coefficient for flow normal and
parallel to the major axis of the particle:

CD (α) = CD,α=0 + (CD,α=90 − CD,α=0) sin3 α (9)

where α is the angle between the major axis of the par-
ticle and the flow direction. Here the projected area at
the evaluated orientation is used in the calculation of
the drag force. Secondly, the work by Yin et al. [9] sug-
gests using available drag correlations expressed by the
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sphericity and thus solely accounting for the dependence
of orientation by using the projected area in the calcula-
tion of the drag force. Recently, a third option has been
presented. Based on a plethora of empirical data for fixed
and freely falling particles Hölzer and Sommerfeld [10]
came up with an expression which uses a cross-wise, ψ⊥,
and lengthwise sphericity, ψ||, to account for the drag
coefficient of different shapes at different orientations:

CD = 8
Re

1√
ψ‖

+ 16
Re

1√
ψ

+ 3
Re

1√
ψ3/4

+ 0.42100.4(− logψ)0.2 1
ψ⊥

(10)

Here the cross-wise sphericity is the ratio between the
cross-sectional area of the volume equivalent sphere and
the projected area of the actual particle. The lengthwise
sphericity is the ratio between the cross-sectional area of
the volume equivalent sphere and the difference between
half of the surface area and the mean projected area. The
cross-wise sphericity should thus aid in the correlation of
the form drag while the lengthwise sphericity is expres-
sive of the friction drag. Note that here the Reynolds
number and the drag coefficient are based on the volume
equivalent sphere.

Figure 4: Evaluation of the different approaches to cor-
relate the drag coefficient with the incidence angle.

Figure 5: Lift/drag ratio at different Reynolds numbers
[11], [15].

Figure 4 shows the drag force for a cylinder at different
orientations, normalized with the drag force at zero inci-
dence angle, calculated using the three suggested meth-
ods and compared to the benchmark (lattice-Boltzmann
simulations) by Hölzer and Sommerfeld [11]. Overall, it
may be noted that the drag force increases with increas-
ing incidence angles due to the increase in projected area.
However, this alone is not sufficient to properly account
for the observed results.

The method by Rosendahl [8] provides a pragmatic
way to calculate the drag force at different incidence an-
gles but also relies upon the availability of experimental
data. For regular shapes these can typically be found
for particles at 90 degree incidence angle whereas em-
pirical fits for particles at zero incidence angle are not
widely available. In this regard it might be useful to
refer to the studies by Militzer et al. [12] which pro-
vide a parametric fit for spheroids as a function of the
Reynolds number and the aspect ratio as well as Isaacs
and Thodos [13] which provide the same for disks and
cylinders at 90 degrees incidence angle. For the present
benchmark data it may be noted that a ‘blending’ func-
tion using sin(α) instead of sin3(α) provides a superior
fit. Hölzer and Sommerfeld [10] constitute a good fit of
the present benchmark data and attractively addresses
all possible shapes at all Reynolds numbers in a single
expression. However, this also indicates that for some
specific shapes such a correlation, similar to the one by
Yin et al. [9], might be associated with relatively large
errors compared to correlations developed for that spe-
cific shape.

4 Orientation dependent lift
The lift force accounts for the sideward motion and is
present whenever the particles principle axis is inclined
to the main flow direction. With a concept taken from
aerodynamics this can be explained as ‘profile’ lift. The
theoretical and empirical basis of predicting the profile
lift relies at much more scant information compared to
that available for drag. For symmetric particles the lift
is zero at both α=0◦ and α=90◦ and it assumes a max-
imum somewhere in between, depending on the shape
and Reynolds number. The usual assumption has been
to assume that the lift is proportional to the drag and
that the dependence with the orientation is given by the
so-called ‘cross-flow principle’ [14]:

CL
CD

= sin2 α · cosα (11)

This relationship was developed for infinite cylinders at
Reynolds numbers in the Newtons law regime. Figure
5 shows data for a spheroid with small aspect ratio to-
gether with the cross-flow principle from eq. (11).

It can be seen that the cross-flow principle provides
a fair fit to the present data at Reynolds numbers in
the Newtons law regime whereas the maximum lift/drag
ratio diminishes as the Reynolds number decreases. This
is related to the relative importance of the friction and
pressure drag at these intermediate Reynolds numbers.
Here we provide the following fit to the present data set
(30<Re<1500) to correlate the influence of the Reynolds
for the cross-flow principle:

CL
CD

= sin2 α · cosα
0.65 + 40Re0.72 (12)

This expression gives correct asymptotic values for
large and small Reynolds numbers but is based on a nar-
row dataset with resulting low accuracy. It should also
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be noted that data shown in Figure 5 is for a spheroid
with relatively low aspect ratio. It seems like the bet-
ter the shape approximates an infinite long cylinder the
clearer the resemblance with the cross-flow principle be-
comes. Once the lift coefficient is specified the lift force
can be found using an expression equivalent to eq. (8).

5 Offset of the center of pressure

In order to correctly predict the incidence angle for esti-
mating the forces and torques, it is of prime importance
to locate the center of pressure. As previously stated a
non-spherical particle tends to fall with its largest cross-
sectional area normal to the flow direction i.e. α=90◦.
Here the center of pressure is coincidental with the geo-
metric center and lift force and torque are zero. Hence
this can be described as the state of stable equilibrium
of the particle. A non-spherical particle inclined to the
flow direction with α=0◦ will also experience no lift or
torque but this can instinctively be perceived as an un-
stable equilibrium. At this extreme, the center of pres-
sure must therefore be no-coincidental with the geomet-
ric center to match observed behavior. Using concepts
from airfoil theory the center of pressure at this extreme
inclination is placed at the ‘quarter chord point’ which
is equivalent to half the distance from the geometric cen-
ter to the end of the particle being oriented towards the
flow [8],[9]. Please refer to Figure 3 for visual illustration.
Marchildon et al. [16] provides a linear approximation
to the derivation by Rayleigh [17] for the pressure dis-
tribution on an infinite flat plate to predict the center of
pressure of a cylinder. This is reported by Marchildon
et al. [16] to be valid for inclinations above α=15◦ due
to the uniformity of the pressure distribution above this
angle. Both Rosendahl [8] and Yin et al. [9] present ex-
pressions which close the gap with regards to the location
of the center of pressure between the two extremes.

Rayleigh [17] xcp/L = (3/4) (sinαi)/(4 + π cosαi)
Marchildon et al.[16] xcp/L = (90− αi)/480
Rosendahl [8] xcp/L = 0.25

(
1− sin3 αi

)

Yin [9] xcp/L = 0.25 cos3 αi

Table 1: Expressions to find the center of pressure.

Figure 6 shows an illustration of the different expres-
sions and it can be seen there is some discrepancy in the
prediction of the center of pressure. More unfortunately,
there seems not to be any guidelines towards which ex-
pression is the most appropriate to use. A freely falling
non-spherical particle will spend most of the time close to
α=90◦ and effort should thus be directed towards finding
the best fit close to this point.

Assuming that Rayleigh’s derivation is valid for gen-
eral non-spherical particles at intermediate Reynolds
numbers it seems attractive to use the simple linear fit by
Marchildon et al. [16]. Once the lift and drag forces are
found as well as the location of their point of attack, i.e.
the center of pressure, it is a small matter of calculating
the resulting torque which is due to the offset from the
geometric center, Toffset.

�Toffset = xcp
(
�FLift + �FDrag + �FOther

)
(13)

Figure 6: Location of the center of pressure for a cylinder
with length L, using the different expressions.

Figure 7: Resistance towards rotation.

6 Rotational resistance
The torque due to resistance can be directly derived
by integration of the friction, caused by rotation, over
the length of the particle. For spheroids subject to the
Stokes conditions, solutions have been known since Jef-
fery [3] and have since been expanded to other shapes
[18]. Relevant expansions for higher Reynolds number
can be found by incorporating appropriate fits for the
drag coefficient in the definition of the drag force before
the integration is performed.

�Tresist = 2
∫ L/2

0
�Fresistdl

=
∫ L/2

0 CD,cylρ (ωf − ωp)2l2Apdl
(14)

This integral can be evaluated with increasing degree
of sophistication. Note that if the particles aspect ratio
is sufficiently large the angular velocity will tend to be
low and an assumption of creeping flow may suffice.

7 Other forces and torques
The unraveling of orientation dependent models up to
now constitutes a description of the minimum number of
forces and torques which are required for the modeling of
non-spherical particles. For specific problems it may be
necessary to address additional forces and torques. For
general fluid flow, these other forces are primary those
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caused by pressure and velocity gradients as well as un-
steady forces such as virtual mass and Basset history
force. Some of these forces may be evaluated by sim-
ple expansions of the equivalent expressions derived for
a sphere whereas others, such as the Basset force, are ut-
terly hopeless to be evaluated for non-spherical particles
even in creeping flow. As a general guideline these forces
may be accounted for by using the projected area or an
equivalent diameter as is suggested in the approach by
Rosendahl [15]. Clearly, order-of-magnitude estimates
may be performed for the unsteady forces acting on non-
spherical particles similar to those which are custom to
be performed for spheres and thus for most gas-solid
flows it is justified to neglect the unsteady forces. For a
freely falling cylinder in water it is not possible to neglect
the unsteady forces. By the nature of this process these
non-spherical particles are oscillating. As such Sorensen
et al. [19] found that the terminal velocity of a steady
falling cylinder slightly oscillated in tune with the larger
oscillations of the angular velocity. For that investiga-
tion an intricate expansion of the drag force, depending
on the angular acceleration was developed to account for
the unsteady forces. However, the general application
of this expression in the calculation procedure presented
here is not possible. For small non-spherical particles
it might be necessary to model non-continuum effects.
This is addressed in the study by Fan and Ahmadi [6]
which introduces both an additional Brownian force and
a Brownian torque in the equations of motion to sup-
plement the fluid dynamic forces. At the same time the
fluid dynamic forces are modified by introducing approx-
imations of the translational and rotational slip factors.
There, in an Eulerian-Lagrangian framework, the nature
of Brownian motion is modeled as a Gaussian random
process. Considering the similarities between Brownian
and turbulent motion such an approach also indicates
possible approaches for non-spherical particles in turbu-
lent flow. Also note that the effect of velocity gradients
has already been incorporated into the expression for ro-
tational resistance, eq.(14), though the vorticity of the
flow field.

8 Conclusion

This outline on the motion of large non-spherical parti-
cles is made to give an overview of the present status of
this topic. The additional consideration of orientation
and angular velocity gives a number of decisive advan-
tages. Firstly, by modeling the orientation dependent
forces and torques it is possible to predict the secondary
motion caused by the non-spherical shape. Secondly, the
modeling of non-spherical particles in the Lagrangian ref-
erence frame, without the severe restriction of creeping
flow allows for the possibility to use this methodology
on a variety of engineering flows which contain large
non-spherical particles. Thirdly, it should be noted that
the solution procedure is only around twice as computa-
tional intensive compared to the present implementation
in commercial codes.
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Segregation of Inertial Particles in Turbulent Flows:
The Application of the Full Lagrangian Method
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1 Introduction

Turbulent structures play a crucial role in many parti-
cle/fluid processes in the environment and industry: ex-
amples include combustion, the production of powder,
the motion of droplets in gas/liquid separators and the
formation and growth of PM10 particulates in the atmo-
sphere. An area of much investigation is the mechanism
for warm-rain initiation and in particular the way droplet
interaction with the small scales of turbulence in clouds
influence the droplet size distribution ([16]).

It is by now well known that turbulence, contrary
to traditionally held views, can demix a suspension of
particles (see e.g. [8]). The process of segregation de-
pends upon the ratio of the particle response time to
the timescale of the turbulent structures in the flow (i.e
the Stokes number, St). Early experiments and simu-
lations (e.g. [6]) have shown that the demixing reaches
a maximum when the particle response time is approxi-
mately equal to the timescale of the turbulent structure
(i.e the particle Stokes number ∼ 1), the suspended par-
ticles being observed to segregate into regions of high
strain rate in between the regions of vorticity. In addi-
tion Maxey and his co-workers ([12, 19]) showed that the
gravitational settling of particles in homogeneous turbu-
lence was enhanced due to preferential sweeping in the
direction of gravity as particles interweave through tur-
bulent structures in the flow. Since then there have been
numerous studies to understand and quantify this segre-
gation process. Of particular note have been the seminal
studies by [18] and [20] to quantify the influence of seg-
regation on two-particle dispersion and the process of
particle agglomeration.

Intrinsically related to the motion of inertial particles
is the presence of random uncorrelated motion in flow
fields that are spatially random but smoothly varying.
RUM refers to the possibility that particle trajectories
may cross, and relates to the sling effect (see e.g. [22]
and [7]) and to the occurrence of caustics in the parti-
cle motion (see [21]). [9] have observed that the spatial
velocity field resulting from the motion of suspended par-
ticles in a direct numerical simulation (DNS) of homoge-
neous isotropic turbulence consists of two components: a
smoothly (continuous) velocity field that accounts for all
particle-particle and fluid-particle two point spatial cor-
relations (they referred to this component as the meso-
scopic Eulerian particle velocity field (MEPVF)); and
a spatially uncorrelated component which we will refer
to here as RUM (the component of random uncorrelated
motion) whose contribution to the particle kinetic energy
increases as the particle inertia increases. [9] attribute
this feature to the ability of the particles with inertia to
retain the memory of their interaction with very distant,
and statistically independent eddies in the flow field.

Segregation and RUM are related to the occurrence
of inter-particle collisions as follows ([18], [20]): i) seg-
regation enhances the particle concentration of certain
regions of the flow, ii) RUM, i.e. the decorrelation of

velocity between particles, causes two nearby particles
to collide and possibly to coagulate. Segregation is well-
known to manifest itself especially for St ∼ 1, whereas
the effect of RUM is almost invisible for small particles
and becomes increasingly important for larger St. Since
the interplay between these two effects determines the
collision rate in a turbulent flow, it is essential to quan-
tify segregation and RUM as accurately as possible as
a function of the Stokes number and some typical flow
properties in order to correctly predict the rate of inter-
particle collisions.

In recent years, the process of segregation of inertial
particles has been studied from different viewpoints when
the Stokes number is relatively small. On the one hand,
[4] demonstrated a strong correlation between the po-
sitions of small inertial particles and the locations of
zero-acceleration points in the carrier flow. On the other
hand, [1] carried out a theoretical analysis based on the
assumption that the velocity of inertial particles can be
directly related to the carrier flow velocity. By doing
so, they were able to show that the segregation of par-
ticles continues indefinitely in the course of time, and
they showed that the concentration of inertial particles
in a turbulent flow is highly intermittent, so the particles
are distributed far from uniformly over space. A similar
approach was chosen by [5] who demonstrated that the
time-converged solution of the radial distribution func-
tion is of the form g(r) ∼ rβ , where the negative number
β is proportional to St2. In addition, they confirmed this
by showing results from a DNS of statistically stationary
homogeneous isotropic turbulence.

The understanding of dilute suspensions of inertial
particles has been vastly extended by interpreting the
motion of particles in terms of dynamical systems the-
ory. The first approach in this direction was given by
[17], and was later specifically applied to the motion of
inertial particles in turbulent flows by [2] and [21]. [21]
derived an analytical expression for the Lyapunov ex-
ponents associated with the motion of inertial particles
in physical space. The derivation was based on the as-
sumption that the typical correlation time of the carrier
flow was very small, i.e. the Kubo number Ku � 1.
Unfortunately, this assumption is not exactly valid in
real turbulence where Ku = O(1), as [21] acknowledge
themselves. [2] showed that if the particle clustering is
fractal, the exponent in the radial distribution function
is equal to β = nd−Dcorr, where Dcorr is the correlation
dimension introduced by [11], and nd is the number of
dimensions of the problem (nd = 2 in a two-dimensional
flow and nd = 3 in a three-dimensional flow). [2] ex-
pressed the clustering of particle in terms of its fractal
dimension in phase space and showed how this was re-
lated to the Lyapunov exponents of the 2nd-dimensional
dynamical system. [3] obtained a correlation dimension
Dcorr by calculating the Lyapunov exponents in a Direct
Numerical Simulation of turbulence for a wide range of
Stokes numbers, and found that nd − Dcorr scales with
St2, in agreement with the aforementioned results by [5].
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Figure 1: a)-c) Positions of 104 particles after time t =
20 in a non-isotropic random straining flow, for St =
0.05 (a), St = 0.5 (b) and St = 5 (c). d) Position of one
single particle after t = 20 in 104 separate realisations of
the non-isotropic random straining flow, for St = 0.5.

In the present paper we employ the Full Lagrangian
Method (FLM) to investigate the segregation and pref-
erential concentration of inertial particles in turbulence-
like flows. This method, originally introduced by [13]
but later also used by [15] and [10], consists of calculat-
ing the size of an infinitesimally small volume occupied
by a group of particles, along the trajectory of one sin-
gle particle. This immediately yields the concentration
of particles along the trajectory, since the inverse of the
volume occupied by a fixed number of particles corre-
sponds to the particle concentration by definition. We
show how the results from the FLM can be translated
into statistics of the particle number density, thus pro-
viding a wealth of information on the segregation pro-
cess. An important advantage of the FLM is that it
provides meaningful results for the compressibility along
the trajectory of a single particle in the course of time;
Lyapunov exponents are, in contrast, only defined in the
limit of time approaching infinity ([14]).

We describe here how the FLM can be used to quan-
tify non-uniformities in the spatial distribution of parti-
cles, the singularities in the particle velocity field and the
presence of RUM. What we show here, is that the FLM
can be further developed and translated into higher-order
statistics of the particle number density. In order to il-
lustrate our application of the FLM and to understand
some of the important underlying features of particle seg-
regation, we first consider its application to the disper-
sion of particles in relatively simple random flows which
share features of real turbulence. We later go on to show
that the features we reveal in these simple flows are com-
mon in particle segregation in a DNS of homogeneous
isotropic turbulence.

The Full Lagrangian Method

We consider small spherical particles with a density ρp
and a radius ap immersed in a carrier flow with a density
ρf and kinematic viscosity νf . Upon assuming the den-
sity of the particle to be much higher than the density of
the carrier flow, i.e. ρp/ρf � 1, the equation of motion
of each particle can be derived from the expression given
in Maxey & Riley (1983):

dx
dt

= v ; dv
dt

= 1
St

(u−v) (1)

where x and v denote the position and the velocity of the
particle, respectively, and u = u(x, t) is the velocity of
the carrier flow at the position of the particle. All vari-
ables have been made dimensionless by a typical wave
number k0 and a typical velocity u0 of the carrier flow.
The dimensionless parameter St ≡ τpu0k0 denotes the
Stokes number, where τp denotes the Stokes particle re-
laxation time defined as τp ≡ 2a2

pρp/9νρ. In all cases
presented here we neglect gravity to isolate effects which
occur purely due to the finite inertia of particles. The
segregation in the course of time can be analysed by using
the Full Lagrangian Method (see Osiptsov (2000), Reeks
(2004) and Healy & Young (2005)). For this purpose,
we investigate the volume occupied by a large number of
particles, which are initially released inside a relatively
small volume centered around x0. The deformation of
such a volume is characterized by the temporal evolu-
tion of the unit deformation tensor J ,whose component
Jij are defined by:

Jij ≡ ∂xi(x0, t)
∂x0,j

, (2)
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where x0 is the position of the particle at some initial
time say t = 0. Differentiating Eq. 2 with respect to
time gives:

d
dt
Jij = ∂υi(x0, t)

∂x0,j
. (3)

The second derivative with respect to time is:

d2

dt2Jij = ∂
∂x0,j

(
dυ(x0,t)

dt

)
=

1
τp

(
∂xk
∂x0,j

)
∂

∂xk
ui(x, t) − 1

τp

∂υ(x0, t)
∂x0,j

. (4)

Inserting Eq. 2 and Eq. 3 into Eq. 4 results in the
equations of motion of each component Jij :

dJij
dt

= J̇ij ,
d
dt
J̇ij = 1

τp

(
Jkj
∂ui
∂xk
− J̇ij

)
, (5)
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Figure 2: Particle trajectories in a frozen field of peri-
odic vortices, for St = 0.1/S (dashed blue line; heav-
ily damped case) and St = 1/S (thick solid line; lightly
damped case), where S represents the strain rate in
the flow. The two particles are released in (x, y) =
(−π/4,−3π/4) with a velocity equal to the local carrier
flow velocity at time t = 0, and traced for a time t = 20.
The highlighted area (grey dash-dotted line) designates
the basic element out of which the entire flow field is
constructed.

We choose as initial conditions Jij(0) = δij and
J̇ij(0) = ∂ui(x0, 0)/∂xj. The total deformation J(t) =
the determinant of the matrix Jij : J(t) = |J|. If the ini-
tial distribution of particles is uniform over a certain do-
main, the deformation in the course of time is inversely
proportional to the particle number density measured
along the trajectory of one reference particle n(t):

J = n−1(t) (6)

where n is normalized so that it is equal to J−1at time
t = 0. Eq. (6) implies that J−α = nα for any α ∈ R The
average over all particles, denoted by the brackets 〈〉, is

〈Jα〉 = 〈n−α(t)〉 (7)

The spatially averaged value of any quantity Φ can be
related to the particle averaged value as follows:

〈Φ〉 = 1
Ω

ˆ
Ω

Φ(x)n(x)d3x =nΦ (8)

where the overbar () denotes a spatial average over the
domain of size Ω considered. Combination of Eq. 7 and
Eq.8 yields:

nα = 〈J1−α〉 (9)

Thus a spatially averaged moment of the particle number
density, n, can be calculated directly from the deforma-
tion J along sufficiently many particle trajectories.

FLM in simple random flows

The Full Lagrangian Method can also be used to deter-
mine the compressibility of the particle phase, C which
we define J−1dJ/dt = dlnJ/dt. We can relate this to the
divergence of the particle velocity field vp(x,t)providing
that the velocity field is single valued and continuous,
namely

C = dlnJ/dt = ∇ · vp(x,t)

Note that the calculation of C does not require the
uniqueness and single valued ness of vp(x,t).

Figs. 3a) and 3b) show the values of J(t) along the
heavily damped and lightly damped particle trajectories
plotted in Fig. 2. In both cases the value of J approaches
zero as t→∞. However in the lightly damped case J(t)
passes through zero at intermediate times as the parti-
cle oscillates backwards and forwards across a stagnation
line. In so doing the value of J oscillates from positive
to negative, with the corresponding elemental volume
rotating through 180◦ as it passes through zero volume.
Each time J(t) passes through zero, the corresponding
particle concentration becomes infinite instantaneously.
This raises the possibility that such events may occur in
real turbulent flows and that the process of particle dis-
persion could be a highly intermittent process associated
with large deviations in the particle concentrations (see
also [10]). It also indicates the conditions under which
particle trajectories cross and RUM becomes important.

Therefore the frequency at which J passes through
zero, ωJ=0, can be an important parameter characteris-
ing the spatial intermittency in the distribution of par-
ticles. The result is given in Fig. 4a), for a value of the
strain rate S =

√
S2∗ =

√
12/π. If St < 0.25/S, ωJ=0 =

0 and J never passes through zero. If St > 0.25/S, how-
ever, ωJ=0 increases very rapidly with St and reaches
a maximum at St = 0.5/S. Thus, the phenomenon of
two particles at the same position with different veloci-
ties (caustics) is apparently completely absent for small
Stokes numbers and increases rapidly as the Stokes num-
ber goes beyond a threshold value of 0.25/S. These re-
sults are in correspondence with the observation of [21],
who show that in real turbulence the collision rate (i.e.
the probability that particle trajectories cross) has an
activation dependence on the Stokes number.

The time-converged solution of t−1〈ln |J |〉 is equal to
the time-converged solution of 〈C〉 = 〈∇·v〉 and can thus
obtain 〈C〉 by calculating J along a particle trajectory
at a given Stokes number in 105 different realisations
of the flow and determine the time-converged value of
t−1〈ln |J |〉, i.e. of 〈∇·v〉. The result is shown in Fig. 4b)
as a function of St, both for the isotropic random strain-
ing flow and for the non-isotropic random straining flow.
If the Stokes number is smaller than a threshold value
Stcr, 〈C〉 is negative, which means that particles are con-
tinuously segregated: the segregation process continues
indefinitely, and therefore the particles will distributed
on a pattern that becomes ever stringier in the course
of time. For large Stokes numbers, 〈C〉 approaches a
positive value.
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Figure 3: Values of the deformation J and the com-
ponents of the deformation matrix J11 and J22 in the
frozen field of periodic vortices depicted in Fig. 2, for
(a) the heavily damped case St = 0.1/S, and (b) the
lightly damped case St = 1/S. The strain rate is taken
as S =

√
S2∗ =

√
12/π.

FLM in kinematic flow simulation (KS)

We present results based on the FLM for a ‘kinematic’
flow field composed of 200 random Fourier modes where
we consider segregation in a similar manner to the anal-
ysis of segregation in the simple random straining flow
discussed earlier. In addition we also calculate the statis-
tics of the particle number density and analyse the oc-
currence of RUM. In all of the simulations, the ini-
tial velocity of a particle was taken equal to the lo-
cal velocity of the carrier flow. Fig. 5 shows the re-
sults of limt→∞ t−1〈ln |J |〉 for a wide range of values of
Stokes numbers. It is noted that this value is equal to
limt→∞〈C〉, i.e. the time converged compressibility of
the particle velocity field. Just like in case of Fig. 4b),
a critical value of the Stokes number can be determined,
Stcr; in the present case, Stcr  0.7. If the particle
Stokes number is lower than Stcr, then the particles
are continuously compressed into smaller volumes in the
course of time and the process of segregation continues
indefinitely. If, on the other hand, the Stokes number is
larger than Stcr, the particle volumes expands or alter-
natively if the particles are confined they become fully
mixed.
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Figure 4: (a) The frequency at which the deformation J
passes through zero, ωJ=0, as a function of the Stokes
number, St ; b) Time-converged solution for the com-
pressibility 〈C〉 = 〈∇·v〉 as a function of the Stokes num-
ber St for both the isotropic random straining flow and
the non-isotropic random straining flow. For the sake of
comparison, the analytical estimate valid for small Stokes
numbers is shown.
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Statistics of the particle number density
Now we investigate the statistics of the particle number
density in the course of time. The moments of the parti-
cle number density can be determined from Eq. 9. The
result for four values of α is presented in Fig. 6, for (a)
St = 0.05 and (b) St = 0.5. In both cases the value of
n0, which corresponds to 〈|J |〉, remains equal to unity
for all time, as expected. In addition, it follows directly
from Eq. 9 that n1 = 〈|J |0〉 = 1. The other moments of
the particle number density are markedly higher than 1
and are associated with the non-uniformity in the spatial
distribution of particles.

There is a qualitative distinction between the cases of
small Stokes numbers such as St = 0.05 in Fig. 6a), and
large Stokes numbers such as St = 0.5 in Fig. 6b). If
the Stokes number is large, it may happen that |J | = 0
for a particle due to the crossing of trajectories. These
intermittent events, which cause n → ∞, dominate the
statistics of higher-order moments of the eps at certain
moments in time, as is reflected by the spikes in the
curve for St = 0.5 in Fig. 6b). Hence, the spatial distri-
bution of particles in a random turbulence-like flow may
be highly intermittent.
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Figure 6: Spatially average of the α-th moment of the
particle number density, nα, for four values of α; a)
Stokes number, St = 0.05; b) St = 0.5.

However, for sufficiently small Stokes numbers where
RUM is not important (such as St = 0.05 in Fig. 6a)),
we observe that nα depends exponentially on time and:

nα ∝ exp(γt), (10)

where γ is a function of α and St As can be seen in 6a),
the higher-order moments grow faster than the lower-
order moments. This demonstrates unambiguously that
the segregation process continues indefinitely in this case
where St = 0.05.

Random uncorrelated motion (RUM)

We present here the velocity correlations between parti-
cles in the flow composed of 200 random Fourier modes.
Particular attention is paid to RUM, i.e. the random un-
correlated component of the kinetic energy of the parti-
cles. For this purpose, the correlation between the veloc-
ities of two inertial particles is calculated. We determine
the longitudinal and transverse velocity correlations, RL
and RT respectively, being normalized in such a way that
they would become 1 at r ↓ 0 if they were calculated for
fluid particles in a homogeneous and isotropic flow.
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Figure 7: a)Two-particle velocity correlation in longitu-
dinal (RL) and transverse (RT ) direction as a function of
the inter-particle separation distance r, for three differ-
ent values of the Stokes number, St b) RUM component
as a function of the Stokes number, St. Both cases refer
to the flow field composed of 200 random Fourier modes.

In Fig. 7a), results are shown for RL and RT as a
function of the inter-particle distance r, for three differ-
ent Stokes numbers: St = 0.1, St = 1 and St = 10.
For a relatively small Stokes number such as St = 0.1,
both the longitudinal and the transverse velocity corre-
lations are close to unity as r ↓ 0. This can be explained
by the fact that the particles have relatively little iner-
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tia, so that the velocities of two neighboring particles are
almost the same. As r becomes larger, RL and RT de-
crease and eventually they approach zero as r → ∞, as
expected. For a larger Stokes number, such as St = 1,
the particle inertia becomes more important which is re-
flected by deviations of RL and RT from unity for small
separation distances. If the particles have a very large
Stokes number like St = 10, then the velocities of two
particles become to a large extent uncorrelated, even if
the particles are close together in physical space. There-
fore, both RL and RT are considerably lower than unity
when r ↓ 0. The typical decorrelation length, however, is
not altered conceivably with respect to the cases of the
lower Stokes numbers.

The RUM component, i.e. the random uncorrelated
component of the kinetic energy of the particles, is de-
fined as 1 minus the velocity correlation in the limit that
particles are infinitesimally close together: In Fig. 7, we
show the RUM-component of the particle pair velocity as
a function of St. The value of RUM is approximately zero
for small Stokes numbers, and it increases monotonically
with the Stokes number, indicating that the velocities of
inertial particles are more and more decorrelated. Even-
tually, RUM → 1 for sufficiently large Stokes numbers,
i.e. the velocities of these particles are entirely decorre-
lated, even when they are very close to each other.

The RUM component is non-zero for particles with e.g.
St  0.5, although the long-time value of t−1〈ln |J |〉 is
clearly negative, see Fig. 5. Thus, the particle segrega-
tion may go on indefinitely despite the fact that RUM
is present. This contradicts the claim made by [9] that
RUM is responsible for a saturation of the segregation
process.

The results presented here show that particle inertia
can have major implications for the collision rates be-
tween particles. Two effects enhance the collision rate
between particles: i) preferential concentration of parti-
cles in relatively few regions of the flow, ii) RUM, i.e.
the decorrelation of velocities between neighboring par-
ticles so that particles are more likely to hit each other.
From Fig. 5, we know that preferential concentration
manifests itself especially for 0.1 < St < 1. The effect of
RUM is most visible for St > 0.5 and increasingly impor-
tant for larger St. Collision rates are therefore expected
to be highest in the Stokes number regime St > 0.5.
Certainly more research is needed to confirm this state-
ment, but the results presented in the seminal paper by
[18] do point in that direction, since they found a maxi-
mum collision rate for a Stokes number Stk (based on the
smallest scale of the flow, the Kolmogorov time scale) of
2 < Stk < 5, with a collision rate vanishing for Stk ↓ 0,
and a collision rate decreasing only slowly with Stk if
Stk > 5.

FLM in DNS of Homogeneous isotropic
turbulence (HIT)
The DNS simulation of statistically stationary HIT is
obtained using a pseudo spectral code using a grid size
128× 128× 128 giving an Reλ = 65. Forcing of the flow
is applied at the lowest wave numbers. 100.000 iner-
tial particles are randomly distributed initially in a box
of L=2. Interpolation of the velocity fluid at the par-
ticle position is obtained with a 6th order Lagrangian
polynomial. Particles trajectories and compressibilities
are calculated by solving the equations of motion using
an RK4 method. The initial conditions are set so that
each elemental volume of particles is a cube. Validity
of the simulation and the numerical calculation of the

compressibility were tested by comparing results for the
compressibility with values obtained from an analytical
expression for small Stokes numbers. Fig.8a) shows the
value of〈lnJ〉/t for Stokes numbers St = 0.1, 0.7, 1, 10.
The trend in behaviour is similar to that for KS and
simple flows, exhibiting a transition from −ve to +ve
compressibilities at a critical Stokes number Srcr though
similar but not the same in each case. Fig 8b) shows the
values for the density moments nαfor α=0,2,3, for a par-
ticle with Stokes number, St = 1. As with case of the
density moments in KS for St = 0.5, the intermittent
events, which cause n → ∞, dominate the statistics of
higher-order moments of the PDF at certain moments in
time, as is reflected by the spikes in the curve.
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Figure 8: Segregation of inertial particles in DNS ho-
mogeneous isotropic stationary turbulence: a) com-
pressibility C = d/dt〈lnJ〉 for Stokes number, St =
0.1, 0.7, 1, 10; b) moments of the particle concentration
nα, α=0,2,3,St = 1.

Summary and concluding remarks

We have shown how the Full Lagrangian Method (FLM)
can be used to study the segregation of inertial parti-
cles in turbulent flows by calculating the deformation

ERCOFTAC Bulletin 82 65



of an initially infinitesimally small volume of particles
along the trajectory of one particle. In particular we
have demonstrated how this method can be used to de-
termine the compressibility of the particle velocity field,
and any spatially averaged moment of the particle num-
ber density. The FLM enables the detection of the very
high intermittency in the spatial distribution of particles
and the associated singularities in the particle velocity
field. These features, which take place on infinitesimally
small scales (in the commonly assumed approximation
of point particles), can not be identified by box counting
methods as they rely on finite box sizes by definition. We
have applied the FLM to particle motion in three differ-
ent random flows: a random straining flow field consist-
ing of counter-rotating vortices, an incompressible flow
field composed of 200 random Fourier modes and a ho-
mogeneous isotropic flow field generated by DNS. In all
three cases the qualitative behaviors were very similar.
In particular all three cases, the volume occupied by the
particle phase as a continuum decreases continuously if
St < Stcr, with Stcr ∼ 0.7, indicating that the ongoing
process of segregation is not limited to relatively simple
flow fields. We also measured the component of random
uncorrelated motion of the particles (RUM) which be-
comes important if St � 0.5; for sufficiently large Stokes
number, RUM → 1, indicating that the particle veloc-
ities become virtually uncorrelated with the underlying
carrier flow field. The presence of RUM is also visible
in the spatially averaged higher-order moments of the
particle number density, which show that the particle
distribution may be highly intermittent.
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Introduction

The methods of modeling turbulent two-phase flows can
be subdivided into two categories depending on the La-
grangian tracking and Eulerian continuum approaches
for handling the particulate phase. In the framework
of the Lagrangian method, the particles are assumed
to encounter randomly a series of turbulent eddies, and
the macroscopic particle properties are determined solv-
ing stochastic equations along separate trajectories. As
a consequence, such a method requires tracking a very
large number of particle trajectories to achieve statisti-
cally invariant solution. As the size of particles decreases,
the representative number of realizations should increase
because of the increasing contribution of particle interac-
tions with turbulent eddies of smaller and smaller scale.
Thus, this technique, especially when coupling with DNS
or LES for the computation of fluid turbulence, provides
a very useful research tool of investigating particle-laden
flows, but it can be too expensive for engineering calcu-
lations. The Eulerian method deals with the particulate
phase in much the same manner as with the carrier fluid
phase. Therefore, the two-fluid modeling technique is
computationally very efficient, as it allows us to use the
governing equations of the same type for both phases. In
addition, the description of fine particles does not cause
great difficulties because the problem of the transport
of particles with vanishing response times reduces to the
turbulent diffusion of a passive impurity. Overall, the
Lagrangian tracking and Eulerian continuum modeling
methods complement each other. Each method has its
advantages and, consequently, its own field of applica-
tion. The Lagrangian method is more applicable for non-
equilibrium flows (e.g., high-inertia particles, dilute dis-
persed media), while the Eulerian method is preferable
for flows that are close to equilibrium (e.g., low-inertia
particles, dense dispersed media).

To simulate the dispersion of low-inertia particles in
turbulent flows, the Eulerian models of diffusion type ap-
pear to be very efficient. In [1-3], a simplified Eulerian
model called the diffusion-inertia model (DIM) was de-
veloped. This model was based on a kinetic equation for
the probability density function (PDF) of particle veloc-
ity distribution [4-6] and was coupled with fluid RANS
in the frame of one-way coupling. The DIM was ap-
plied to simulate various turbulent flows laden with low-
inertia particles and was incorporated in the CFD code
SATURNE for modeling aerosol transport in ventilated
rooms [7]. The advantage of the Eulerian diffusion-type
models is that the particle velocity can be explicitly ex-
pressed in terms of the properties of the carrier fluid
flow. By this means, one avoids the need to solve the
momentum balance equations for the particulate phase,
and the problem of modeling the dispersion of the par-
ticulate phase amounts to solving a sole equation for the
particle concentration. Thus, computational times are

seriously shortened as compared to full two-fluid Eule-
rian models. The disadvantage is that these are appli-
cable only to the two-phase flows laden with low-inertia
particles. For example, the DIM is valid when the par-
ticle response time is less than the integral timescale of
fluid turbulence. Nevertheless, these models are capable
of predicting the main trends of particle distribution, in-
cluding particle preferential concentration, over a fairly
wide range of particle inertia.

In this paper, we extend the DIM to include the
back-effect of particles on the fluid turbulence in the
frame of two-coupling. Moreover, the so-called inertia
and crossing-trajectory effects we incorporated into the
model and the boundary condition for the particle con-
centration equation is refined. This extended model is
applied to the three-dimensional simulation of aerosol
deposition in straight ducts and circular bends.

Mathematical formulation

The theoretical background of the model is a transport
kinetic equation for the one-particle PDF, P , that is the
probability of observing a particle at a point x, with a
velocity v, at time t. This kinetic equation has the form

∂P
∂t + vi ∂P∂xi + ∂

∂vi

[(
Ui−vi
τp

+ Fi
)
P
]

= λij ∂P∂vj + μij ∂P∂xj + DB
τ2
p

∂2P
∂vi∂vi

,

λij = 〈u′iu′k〉
(
fu kj
τp

+ lu kn ∂Uj∂xn
)
− Dp〈u′iu′k〉

Dt
fu1 kj

2 ,

μij = 〈u′iu′k〉gu kj , fu ij = 1
τp

∞∫

0
ΨLp ij(τ) exp

(
− ττp
)
dτ,

fu1 ij = 1
τ2
p

∞∫

0
τ ΨLp ij(τ) exp

(
− ττp
)
dτ,

gu ij = TLp ij
τp
− fu ij , lu ij = gu ij − fu1 ij ,

TLp ij =
∞∫

0
ΨLp ij(τ)dτ,

Dp〈u′iu′j〉
Dt = ∂〈u′iu′j〉

∂t + Up k
∂〈u′iu′j〉
∂xk

+ ∂〈u′iu′ju′k〉p
∂xk

,

Up i = Ui − τpμij ∂ ln Φ
∂xj
,

〈u′iu′ju′k〉p = − τp3
(
μin
∂〈u′ju′k〉
∂xn

+ μjn ∂〈u
′
iu
′
k〉

∂xn
+ μkn

∂〈u′iu′j〉
∂xn

)
,

(1)
where τp is the particle response time, Fi is a body
force acting on particles (e.g., gravity), Ui is the aver-
age fluid velocity, DB is the Brownian diffusivity, 〈u′iu′j〉
is the fluid kinetic stresses, ΨLp ij(τ) is the autocorre-
lation function of the fluid velocity seen by particles,
TLp ij are the Lagrangian timescales of the fluid velocity
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seen by particles (the so-called eddy particle interaction
timescales), and fu ij , fu1 ij , gu ij , lu ij are the tensor
coefficients that measure a response of particles to the
fluid turbulence, i.e., a coupling between the fluid and
particulate phases. The first two terms on the right-
hand side of (1) describe the interaction of particles with
fluid turbulent eddies, and the second term quantifies
the contribution of Brownian motion. To determine the
particle turbulence interaction terms, we model the fluid
turbulence by a Gaussian random process and use the
functional formalism [4-6]. The modeling of the fluid ve-
locity field by the Gaussian process is the key assumption
that allows us to present the particle turbulence interac-
tion in the form of a second-order differential operator.
The quantities Up i and 〈u′iu′ju′k〉p denote the fluid aver-
age velocity and third-order fluctuating correlation seen
by particles [8].

By integrating Eq. (1) over the velocity subspace, we
can obtain a set of governing conservation equations for
the volume fraction, Φ, the average velocity, Vi, and the
kinetic stresses, 〈v′iv′j〉, of the particulate phase

∂Φ
∂t

+ ∂ΦVi
∂xi

= 0 (2)

∂Vi
∂t

+ Vj
∂Vi
∂xj

= −∂Φ〈v
′
iv
′
j〉

∂xj
+ Ui − Vi
τp

+ Fi − μij ∂ ln Φ
∂xj

(3)

∂〈v′iv′j〉
∂t + Vk

∂〈v′iv′j〉
∂xk

+ 1
Φ
∂Φ〈v′iv′jv′k〉
∂xk

= − (〈v′iv′k〉+ μik) ∂Vj∂xk
− (〈v′jv′k〉+ μjk

)
∂Vi
∂xk

+ λij + λji + 2DBδij
τ2
p
− 2〈v′iv′j〉

τp
.

(4)
For the purpose of simplification, the Lagrangian

timescale tensor of fluid turbulence, TL ij , is assumed
to be isotropic, TL ij = TLδij . And yet we shall still take
into account the different timescales of particle interac-
tion with turbulent eddies in different directions a phe-
nomenon that arises as a consequence of the ‘crossing-
trajectories effect’ [9]. As a result, we shall still observe
the distinction between the longitudinal, T lLp, and trans-
verse, T nLp, components of TLp ij . In this case, the tensor
TLp ij is given by TLp ij = T nLpδij +

(
T lLp − T nLp

)
eiej,

ei = Vr i
|Vr | , Vr = V −Up, where the superscripts l and

n symbolize, respectively, the longitudinal (parallel) and
normal (perpendicular) directions to the relative velocity
vector Vr.

From Eqs. (3) and (4), one can express the velocity
of low-inertia particles as an expansion in terms of the
local characteristics of the turbulent fluid, with the par-
ticle response time as a small parameter. Truncating
the velocity expansion to the first-order effect of particle
inertia and substituting this into (2), we can obtain a
diffusion-type equation for the particle concentration in
a quasi-isotropic approximation

∂Φ
∂t + ∂UiΦ

∂xi
+ ∂
∂xi

[
τp
(
Fi − DUiDt

)
Φ
]

= ∂
∂xi

[(
DB +DmTp

)
∂Φ
∂xi

]
+ ∂
∂xi

(
Φ∂q

m
u D

m
Tp

∂xi

)
,

DmTp = DTT
m
Lp

TL
, TmLp = T lLp+2TnLp

3 , qmu = τpf
m
u

Tm
Lp

(5)

with DT being the turbulent diffusivity of noninertial
admixture.

By this means, for low-inertia particles, namely, when
the particle response time is shorter than the turbulence

time macroscale, the conservation equation set can be
reduced to the diffusion-type equation for the particle
concentration, and hence one does not require solution
to conservation equations for the momentum of the par-
ticulate phase. This approach was called the DIM. In the
limit of zero-inertia particles, the concentration equation
becomes the conventional diffusion equation. In com-
parison with the latter, the DIM allows us to take into
account a number of effects caused by particle inertia:
(i) the impact of gravity and other body forces, (ii) the
so-called inertial bias effect, i.e., the transport by reason
of the deviation of particle trajectories from the fluid
streamlines, (iii) the turbulent migration (turbophore-
sis) due to the gradient of velocity fluctuations, and (iv)
the inertia and crossing-trajectory effects on particle tur-
bulent diffusivity.

To determine the response coefficients, we involve the
two-scale bi-exponential autocorrelation function pro-
posed by Sawford [10]. The eddy particle interaction
timescales are determined using the model presented in
[11]. The particle response time is given by

τp = ρpd
2
p{1+Kn[A1+A2 exp(−A3/Kn)]}

18ρfνf(1+0.15Re0.687
p )

where dp is the particle diameter, ρp and ρf are the parti-
cle and fluid densities, υf is the fluid kinematic viscosity,
Kn designates the Knudsen number, and according to
[12] A1=1.2, A2=0.41, A2=0.88.

In order to avoid the need to solve the particle con-
centration equation up to the wall, we use the method of
wall-functions that has extensively employed in model-
ing single-phase turbulent flows. In accordance with this
method, we invoke a relation between the flow rate of
deposing particles, Jw, and the particle concentration in
the near-wall region outside the viscous sub-layer, Φ1,

Jw = 1−χ
1+χ (γVDT + VCF ) Φ1,

γ = exp(−b2/π)
1+erf(b/π1/2) , b = VCF

VDT
, VDT = VDF + VTR,

VCF = Uw + τp
(
Fw − DUDt

∣
∣
w

)
, VDF = 0.115 u∗

Sc3/4
B

,

VTR = 2 ·10−4τ2.5
+ (1+10−3τ2.5

+ )−1
u∗

max[0.8, min(1.32−0.27 ln τ+, 1)] .

(6)

Here VDT designates the ‘diffusion turbophoresis’ depo-
sition rate defined as the sum of the diffusion VDF and
turbophoresis VTR velocities, and VCF designates the
‘convection force’ deposition rate where Uw, Fw, and
DU/Dt|w are the wall-normal components of fluid ve-
locity, body force acceleration, and fluid acceleration in
the near-wall region. The quantity χ is the rebound co-
efficient that measures a probability of particle rebound
from the wall and its return into the flow after colli-
sion. The surface is perfectly adsorbing if χ=0 , and the
particle deposition is absent if χ=1 . The parameter b
quantifies the ratio of the ‘convection force’ and ‘diffu-
sion turbophoresis’ components of the deposition rate.
Deposition is controlled by the ‘convection force’ mech-
anism when b → ∞ ( γ → 0 ), and the deposition rate
tends to zero when b→∞ ( γ → −b) because the action
of this inhibits the motion of particles to the wall.

The coefficient γ is obtained assuming that the nor-
mal velocity PDF of particles in the near-wall region
obeys a bi-normal distribution. The ‘diffusion’ compo-
nent of the deposition rate, VDF , is found as a result
of solving the diffusion equation in the viscous sub-layer
for the fourth-degree-law of rise in the turbulent diffu-
sivity at high Schmidt numbers, where u∗ is the wall
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friction velocity, and ScB ≡ DB/νf is the Schmidt num-
ber. The ‘turbophoresis’ component of the deposition
rate, VTR, is obtained as a result of approximating a nu-
merical solution of Eqs. (2) (4) in the near-wall region.
The boundary condition (6) is valid for the particles with
τ+ ≡ τpu2

∗/νf ≤ 100 when the first grid node is chosen
outside the viscous sub-layer (y+ ≡ yu∗/ν ≥ 30) where
Φ1 changes weakly with variation in the normal distance
from the wall.

The balance fluid momentum equation is given by
DUi
Dt = − 1

ρf
∂P
∂xi

+ ∂
∂xj

(
νf
∂Ui
∂xj
− 〈u′iu′j〉

)
+ M
τp

(Vi − Up i),
where P is the average pressure,M ≡ ρpΦ/ρf is the mass
particle loading of the fluid, and the last term quantifies
the back-effect of particles on the fluid momentum.

Turbulent flow characteristics are simulated on the ba-
sis of a k-ε turbulence model modified due to the presence
of particles in the flow

(1 +Mfmu1) DkDt = ∂
∂xi

{[
νf + (1 +Mfmu1) νTσk

]
∂k
∂xi

}

+ (1 +Mfmu1) Π− (ε+ εp +Gp) ,

(1 +Mfmu1) DεDt = ∂
∂xi

{[
νf + (1 +Mfmu1) νTσε

]
∂ε
∂xi

}

+ εk [Cε1 (1 +Mfmu1) Π− Cε2 (ε+ εp +Gp)] ,

〈u′iu′j〉 = 2kδij
3 − νT

(
∂Ui
∂xj

+ ∂Uj
∂xi
− 2

3
∂Uk
∂xk
δij

)
,

νT = Cμ(1+Mfmu1)k2

ε+εp+[(1+Mfmu1)Π−(ε+εp)]/C1
,

Π = −〈u′iu′j〉∂Ui∂xj , εp = 2M
τp

(1− fmu ) k,

Gp = 2ρpgmu k
3ρf Vr i

∂Φ
∂xi

(7)
with the values of constants being as follows: Cμ = 0.09,
σk = 1.0, σε = 1.3, Cε1 = 1.44, Cε2 = 1.92, and C1 =
1.1.

Simulation results and discussion
The DIM, consisting of the particle concentration equa-
tion (5) and the boundary condition (6), is coupled with
the fluid balance equations. The model advanced is eval-
uated against experiments and numerical simulations of
aerosol deposition in vertical ducts and circular bends.
The surface is assumed to be perfectly adsorbing, that
is, the rebound coefficient, χ, is taken as zero in (6). Cal-
culations have been performed using a three-dimensional
finite-volume CFD code.

First we examine the performance of the model for the
deposition of particles in a vertical duct flow, when the
gravity force does not exert direct action on the depo-
sition rate. It is a common convention to describe the
deposition rate of particles from turbulent flow by the
dependence of the deposition coefficient j+ ≡ Jw/Φmu∗,
where Φm is the bulk volume particle fraction, on the
particle inertia parameter τ+. In line with the pri-
mary mechanism governing the process of deposition,
the entire range of particle inertia may be subdivided
into three regimes: the diffusion regime (τ+ < 1 ), the
turbophoresis regime (1 ≤ τ+ ≤ 100), and the iner-
tia regime (τ+ > 100). The deposition process of the
diffusion regime is mainly governed by Brownian and
turbulent diffusion, and, in this situation, j+ declines
monotonously with τ+ as a result of a decrease in the
Brownian diffusivity with increasing aerosol size. The
basis deposition mechanism of the turbophoresis regime
is the turbulent migration of particles from the flow core,

which is characterized by high-level velocity fluctuation
intensity, to the viscous sublayer adjacent the wall. This
regime features a strong dependence of j+ on τ+. High-
inertia particles (τ+ > 100) are weakly involved in turbu-
lent flow of the carrier fluid, which causes the deposition
coefficient j+ in a vertical duct to decrease with τ+.

Figure 1: The deposition coefficient in vertical duct
flows. (1) DIM Re=10000, (2) DIM Re=50000, (3) [13],
(4) [14], (5) [17], (6) [15], (7) [16].

Figure 1 presents the predictions of the deposition co-
efficient for the pipe flow conditions which correspond
to experiments [13]. To focus attention on the deposi-
tion mechanisms caused by the interaction of particles
with turbulent eddies, the gravity and lift forces are ne-
glected and hence Fi = Fw = 0. In Fig. 1, the depo-
sition coefficients obtained for duct flows using DNS [14
16] and LES [17] are shown as well. Note that, in the
diffusion and turbohoresis regimes, the deposition pro-
cess is mainly governed by the interaction of particles
with near-wall turbulent eddies. Therefore, the depo-
sition rates determined in round pipe and flat channel
flows are hardly distinguishable. As is clear from Fig.
1, the DIM properly captures the dependence of j+ on
τ+ at τ+ < 100 . The deposition coefficient predicted
for high-inertia particles is found to systematically devi-
ates from the measurements, because the model does not
predicts a decrease in j+ with τ+. Thus, to predict the
deposition rate, the DIM can be successfully employed
only in the diffusion and turbophoresis regimes.

In what follows we focus our attention on the disper-
sion and deposition of aerosol particles in 90◦ bends.
Hydrodynamic structure of these flows is complex. It
is characterized by the existence of curved streamlines
and recirculating regions. The key nondimensional pa-
rameters that govern the flow are the Reynolds number
defined as Re = DUm/νf and the Dean number defined
as De =Re

/
R

1/2
0 where R0 ≡ 2Rb/D is the curvature

ratio, D is the duct diameter, Um is the mean axial fluid
velocity, and Rb is the bend curvature radius. For high
Dean numbers, the flow in the bend is mainly governed
by the centrifugal force which changes cardinally the flow
pattern as compared to that in the straight duct. The
main features of the flow in the bend consist in sepa-
rating the mean flow from the inner side, displacing it
to the outer side, and generating the secondary flow in
the form of a symmetric pair of counter-rotating helical
vortices.
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Figure 2: The effect of Stokes number on the deposition
efficiency. (1) DIM, (2) [18], (3) [19], (4) [20].

Figure 3: The effects of curvature ratio and Stokes num-
ber on the penetration. (1 3) DIM, (4 6) [21]: (1, 4)
RO=4, (2, 5) 10; (3, 6) 20.

Figure 4: The effect of particle size on the deposition
efficiency in the bend. (1) DIM, (2) [22].

The total process of aerosol deposition can be mea-
sured by the penetration of particles which is defined as

the ratio of the particle flow rates in the outlet and in-
let sections of the bend, ξ = Goutlet/Ginlet, or by the
deposition efficiency, η = 1−ξ. Figure 2 presents the de-
position efficiency predicted in the bend under the con-
ditions corresponding to experiments [18] for Re=10000,
De=4225, and RO=5.6. The inertia of particles is quan-
tified by the Stokes number defined as St =2τpUm/D. In
these circumstances, the deposition of particles is caused
by the simultaneous action of diffusion, thermophoresis,
gravity, and centrifugal force. However, the dominating
mechanism is the centrifugal force due to the bend of
the main flow and the formation of the secondary flow.
As is clear from Fig. 2, the effect of the Stokes number
predicted by the DIM is in good agreement with both
experimental data [18] and simulations [19, 20].

Figure 3 demonstrates the effects of the curvature ra-
tio and the Stokes number on the penetration of parti-
cles in the bend at Re=10000. Predictions are compared
with experiments performed in [21] over a wide range of
curvature ratios. It is obvious that the centrifugal effect
increases as the curvature ratio decreases. Therefore, the
penetration falls with both increasing St and decreasing
RO. As is clear, the DIM reasonably reproduces these
effects. Some distinction between the predictions and
the measurements is observed at small Stokes numbers,
when the DIM overestimates the deposition rate.

Figure 4 compares the deposition efficiency with exper-
imental data [22] in the bend at Re=203000 and RO=5.
These experiments were carried out in a bend ofD=0.152
m at a mean velocity of 20 m/s, and hence they were the
first to be directly applicable to industrial bends. It is
clear that the DIM can adequately predict the deposi-
tion of aerosols at such high Reynolds numbers which
are typical of industrial applications.

Summary

The paper is focused on development and application
of the DIM for the simulation of dispersion and depo-
sition of aerosol particles in two-phase turbulent flows.
The model stems from a kinetic equation for the prob-
ability density function of velocity distribution of par-
ticles whose response times do not exceed the integral
timescale of fluid turbulence. The salient feature of the
DIM consists in expressing the particle velocity as an
expansion in terms of the properties of the carrier fluid,
with the particle response time as a small parameter.
By this means, the problem of modelling the disper-
sion of the particulate phase reduces to solving a sole
equation for the particle concentration. Thus, compu-
tational times are seriously shortened as compared to
full two-fluid Eulerian models. The model presented is
capable of predicting the main trends of particle distri-
bution including the effect of preferential accumulation
due to turbophoresis. The DIM has been incorporated in
a CFD code and coupled with fluid RANS in the frame
of two-way coupling. Simulations of aerosol deposition in
vertical pipes and circular bends have been performed.
The results of deposition efficiency obtained using the
DIM are found to be in encouraging agreement with both
experimental data and Lagrangian tracking simulations
coupled with fluid DNS or LES.
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The simultaneous presence of several different 
phases in external or internal flows such as gas, 
liquid and solid is found in daily life, environment 
and numerous industrial processes. These types of 
flows are termed multiphase flows, which may 
exist in different forms depending on the phase 
distribution. Examples are gas-liquid 
transportation, crude oil recovery, circulating 
fluidized beds, sediment transport in rivers, 
pollutant transport in the atmosphere, cloud 
formation, fuel injection in engines, bubble 
column reactors and spray driers for food 
processing, to name only a few. As a result of the 
interaction between the different phases such 
flows are rather complicated and very difficult to 
describe theoretically. For the design and 
optimisation of such multiphase systems a detailed 
understanding of the interfacial transport 
phenomena is essential. For single-phase flows 
Computational Fluid Dynamics (CFD) has already 
a long history and it is nowadays standard in the 
development of air-planes and cars using different 
commercially available CFD-tools. 

 

Due to the complex physics involved in 
multiphase flow the application of CFD in this 
area is rather young. These guidelines give a 
survey of the different methods being used for the 
numerical calculation of turbulent dispersed 
multiphase flows. The Best Practice Guideline 
(BPG) on Computational Dispersed Multiphase 
Flows is a follow-up of the previous ERCOFTAC 
BPG for Industrial CFD and should be used in 
combination with it. The potential users are 
researchers and engineers involved in projects 
requiring CFD of (wall-bounded) turbulent 
dispersed multiphase flows with bubbles, drops or 
particles. 
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