

Development and Validation of Wind-Farm Blockage and Wake Models

ERCOFTAC Autumn Festival Liège, 12–13 October 2023

Johan Meyers, Luca Lanzilao, Koen Devesse Department of Mechanical Engineering

Bloomberg

Climate Changed

Offshore Wind Gets a Warning From Its Biggest Developer

By Will Mathis and Christian Wienberg

October 29, 2019, 1:28 PM GMT+1 Updated on October 29, 2019, 4:26 PM GMT+1

- Danish wind farm builder overestimated time turbines can spin
- Cost of technology has plunged, boosting pace of installations

LISTEN TO ARTICLE

The world's biggest developer of offshore wind farms issued a reality check to the industry, saying it has overestimated the amount of time its turbines are generating electricity.

SHARE THIS ARTICLE

Share

3:28

Copenhagen-based Orsted A/S announced that offshore wind farms

Article

Wind Farm Blockage and the Consequences of Neglecting Its Impact on Energy Production

James Bleeg ^{1,*}^(D), Mark Purcell ², Renzo Ruisi ^{1,3} and Elizabeth Traiger ¹

- ¹ DNV GL, Group Technology & Research, Power & Renewables, Bristol BS2 0PS, UK; renzo.ruisi@dnvgl.com (R.R.); elizabeth.traiger@dnvgl.com (E.T.)
- ² DNV GL, Energy, Project Development, Melbourne 3008, Australia; m.purcell@dnvgl.com
- ³ DNV GL, Energy, Project Development, Glasgow G1 2PR, UK
- * Correspondence: james.bleeg@dnvgl.com; Tel.: +44-786-018-1323

Received: 22 March 2018; Accepted: 15 June 2018; Published: 20 June 2018

J. Fluid Mech. (2017), *vol.* 814, *pp.* 95–130. © Cambridge University Press 2017 This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. doi:10.1017/jfm.2017.11

Boundary-layer development and gravity waves in conventionally neutral wind farms

Dries Allaerts^{1,†} and Johan Meyers¹

Boundary-Layer Meteorol (2018) 166:269-29
https://doi.org/10.1007/s10546-017-0307-5

95

RESEARCH ARTICLE

Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

Dries Allaerts¹ · Johan Meyers¹

- ➔ Gravity waves excited by wind farms
- Leads to significant upstream slow-down in semi-infinite wind farm LES

No gravity waves, negligible blockage

T = 0 minutes

Gravity waves & resulting blockage

T = 0 minutes

KU LEUVEN

Gravity-wave induced pressure perturbation

Pressure perturbation

Wind-farm-ABL interactions

SAR image over the German Bight offshore wind-farm area Finseras et al. (2023)

Caix, France - Photo by: Felix Vanderleenen

Outline

- 1. Set-up of LES database on wind-farm gravity waves and blockage
- 2. Effects of blockage and gravity waves on wind-farm efficiency
- 3. Development and validation of a fast meso-micro model for WF blockage
- 4. Conclusions

Conventionally neutral BL (typical offshore conditions)

Velocity

KU LEUVEN

KU LEUVEN

Wind-farm LES database: 40 cases – inflow

LEUVEN

SP-Wind: pseudo-spectral LES solver

Precursor

Main

 5.2×10^9 degrees of freedom

Lanzilao and Meyers, BLM (2023)

KU LEUVEN

Domain sensitivity

Outline

- 1. Set-up of LES database on wind-farm gravity waves and blockage
- 2. Effects of blockage and gravity waves on wind-farm efficiency
- 3. Development and validation of a fast meso-micro model for WF blockage
- 4. Conclusions

Farm efficiency

Definitions from Allaerts & Meyers, BLM 2018

Single-turbine simulations

Evaluate P_{∞}

Non-local and wake efficiency

KU LEUVEN

For details: see Lanzilao & Meyers, submitted to JFM Preprint: <u>https://arxiv.org/pdf/2306.08633.pdf</u>

Farm efficiency

KU LEUVEN

Outline

- 1. Set-up of LES database on wind-farm gravity waves and blockage
- 2. Effects of blockage and gravity waves on wind-farm efficiency
- 3. Development and validation of a fast meso-micro model for WF blockage
- 4. Conclusions

Wayve [Wind-fArm GravitY-waVe and BlockagE]

V1 now open source: https://gitlab.kuleuven.be/TFSO-software/wayve

ATMOSPHERIC PERTURBATION MODEL

Allaerts & Meyers, J. Fluid Mech 2019

Devesse et al. Wind Energy Science 2022

Model equations: meso-scale level

I. Start from steady RANS equations + horizontal filter $\overline{\phi}(x, y) = \int_0^{L_x} \int_0^{L_y} G(x - x', y - y') \phi(x', y') dx' dy', \quad \phi = \overline{\phi} + \phi''$ Gauss kernel with filter width O(1 km)

II. Define pliant surfaces $z_1(x, y)$ above wind farm and $z_2(x, y)$ above boundary layer (using filtered properties)

$$\overline{w}(x, y, z_1) = \overline{u}_h(x, y, z_1) \cdot \nabla_h z_1,$$

$$\overline{w}(x, y, z_2) = \overline{u}_h(x, y, z_2) \cdot \nabla_h z_2,$$

II. Height-integrate between the pliant surfaces

$$\overline{\phi}_1 = \frac{1}{z_1} \int_0^{z_1} \overline{\phi}(z) dz,$$
$$\overline{\phi}_2 = \frac{1}{z_2 - z_1} \int_{z_1}^{z_2} \overline{\phi}(z) dz$$

Model equations: meso-scale level

Model equations in Layer 1 [Layer 2 = equivalent]

KU LEUVEN

Model equations: meso-scale level

Additional steps

- 1. Linearization around unperturbed background state
 - allows for fast linear solve with preconditioned GMRES
- 2. Closure of different terms (eddy-viscosity; drag coefficients for interfaces)
- 3. Pressure BC at top of BL via analytical solution to Helmholtz equation
- 4. Coupling to micro-scale levels (next)

Micro-scale model

preprint to appear soon

Wake model with varying background field

 $u_{w}(x) = \prod_{k=1}^{N_{t}} A_{k}(x) \cdot U_{b}(x),$ Wake model velocity Tensor containing Individual wake parametrization

Details wake model – see: Lanzilao & Meyers, Wind Energy, 2022

Meso-micro coupling based on velocity matching between both levels $\rightarrow U_b$

$$\frac{1}{z_1} \int_0^{z_1} \int_0^{L_x} \int_0^{L_y} G(x - x', y - y') \frac{u_w(x', y', z)}{Micro} dx' dy' dz = \frac{u_1(x, y)}{Meso}$$
For details: Devesse, Lanzilao & Meyers,

H500- $\Delta\theta$ 5- Γ 4

KU LEUVEN

Comparison between model and LES (meso-scale field)

For details: Devesse, Lanzilao & Meyers, preprint to appear soon

H500- $\Delta\theta$ 5- Γ 4

Comparison between model and LES

Meso scale velocity

Meso + micro velocity

Comparison of Wayve and wake models versus LES

Conclusions

- LES database of wind-farm gravity waves under various atmospheric conditions
 Database will become available open source soon (approx. 20TB)
- Gravity waves lead to unfavorable pressure gradient in front of the farm; favorable pressure gradient in the farm. Strong correlations with nonlocal and wake efficiency
- 3. WAYVE: fast engineering model for wind farm blockage

Thank you

