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Science has entered a fourth paradigm, based on the 
availability of massive data and new analytics
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Grand challenges in turbulent reacting flows
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Non-linear evolution of the chemical state-space and 
large temperature fluctuations

kf,j = Af,jT
�f,jexp

✓
�Ef,j

RT

◆

<latexit sha1_base64="yoqufoc56/a1gG7X3U6kNQIiq0Q="></latexit>



Machine learning for combustion
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Physics-based, data-driven approaches
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State-space methods 
Equilibrium, Steady Laminar Flamelets (SLFM) 

Flamelet Prolongation of the ILDM (FPI) / 
Flamelet generated Manifold (FGM)

Rate-based methods 
Intrinsic Low-Dimensional Manifolds (ILDM), 
Computational Singular Perturbation (CSP), 

Directed-Relation Graph (DRG) …

Data-driven modelling for dimensionality reduction
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3. Mechanism reduction

2. Classification

Data-driven modelling for dimensionality reduction
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Figure 1: Schematic overview of training data sets for reduced-order modeling. Those have also been
briefly reviewed in [29]. Figure taken from [29]. We’ll have to request rights from Cambridge University
Press to re-use this figure.

As an illustrative example, we present the governing equations for a zero-dimensional reactor. For an
adiabatic, incompressible zero-dimensional reactor (also referred to as a homogeneous reactor) equations:
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Since a zero-dimensional reactor represents combustion happening in a single point in space, all spatial
derivatives present in Eqs. (2)-(8) vanish.2 In addition, the strained laminar flamelet governing equations
read:
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where � is the scalar dissipation rate and f is the mixture fraction []. In essence, the parameter � models
the strain applied to the flame structure and thus mimics the e↵ect of molecular di↵usion. Mixture fraction
parameterizes the local stoichiometry. Both the zero-dimensional reactor and the flamelet model have the
same state and source vector quantities. Thus, matrices X and S are formed with the same quantities.
Collecting all observations of Yi and of T into a matrix X, and collecting all observations of !i/⇢ and of
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Note, that even though we have removed the nth species mass fraction, the temperature equation still
couples all species through the term �Pn

i=1 hi!i, which represents the heat release rate (HRR).

4 Reduced-order modeling

Add some introduction.

Typically, N � Q, but the magnitude of Q strongly depends on the number of components of the mixture.
In combustion problems, Q can easily reach the order of hundreds when large chemical mechanisms are
used. Thus, from the linear algebra perspective, the matrix X can be of a high rank.

2Now that I think about it, I know it doesn’t make sense to solve momentum equation for a batch reactor, but it should still
mathematically hold (?), and it somehow doesn’t in my head... With the absence of velocity and with the absence of "space", it
seems that we are left with 0 = ⇢

Pn
i=1 Yifi. And RHS isn’t zero in the presence of gravity... Maybe this has something to do with

that it’s also not physically correct to assume mass not occupying any space...
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Press to re-use this figure.

As an illustrative example, we present the governing equations for a zero-dimensional reactor. For an
adiabatic, incompressible zero-dimensional reactor (also referred to as a homogeneous reactor) equations:

@ Yi

@t
=
!i

⇢
,

@ T
@t

= � 1
⇢cp

nX

i=1

hi!i . (12)

Since a zero-dimensional reactor represents combustion happening in a single point in space, all spatial
derivatives present in Eqs. (2)-(8) vanish.2 In addition, the strained laminar flamelet governing equations
read:

@ Yi

@t
=
�
2
@2Yi

@ f 2 +
!i

⇢
,

@ T
@t

=
�
2
@2T
@ f 2 �

1
⇢cp

nX

i=1

hi!i , (13)

where � is the scalar dissipation rate and f is the mixture fraction []. In essence, the parameter � models
the strain applied to the flame structure and thus mimics the e↵ect of molecular di↵usion. Mixture fraction
parameterizes the local stoichiometry. Both the zero-dimensional reactor and the flamelet model have the
same state and source vector quantities. Thus, matrices X and S are formed with the same quantities.
Collecting all observations of Yi and of T into a matrix X, and collecting all observations of !i/⇢ and of
�1/⇢cp

Pn
i=1 hi!i into a matrix S, we get

X =

2
666666666664

...
...

...
...

T Y1 Y2 . . . Yn�1
...

...
...

...

3
777777777775

and S =

2
66666666666666666664

...
...

...
...

� 1
⇢cp

nX

i=1

hi!i
!1

⇢
!2

⇢
. . .

!n�1

⇢

...
...

...
...

3
77777777777777777775

.

Note, that even though we have removed the nth species mass fraction, the temperature equation still
couples all species through the term �Pn

i=1 hi!i, which represents the heat release rate (HRR).

4 Reduced-order modeling

Add some introduction.

Typically, N � Q, but the magnitude of Q strongly depends on the number of components of the mixture.
In combustion problems, Q can easily reach the order of hundreds when large chemical mechanisms are
used. Thus, from the linear algebra perspective, the matrix X can be of a high rank.

2Now that I think about it, I know it doesn’t make sense to solve momentum equation for a batch reactor, but it should still
mathematically hold (?), and it somehow doesn’t in my head... With the absence of velocity and with the absence of "space", it
seems that we are left with 0 = ⇢

Pn
i=1 Yifi. And RHS isn’t zero in the presence of gravity... Maybe this has something to do with

that it’s also not physically correct to assume mass not occupying any space...

8



Reactive scalars are correlated in state-space:  how can we 
best parameterise the manifolds?
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(Linear) modal decomposition methods 
such as Principal Component Analysis 
provide a parameterisation that can be 
used to derive transport models for 
combustion simulations

PCA can be used to generalise the 
selection of “optimal progress variables” 
in state-space methods
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PCA is an eigenvalue/eigenvector problem applied to the 
covariance matrix of the data set, S
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A new coordinate system is identified in the direction of 
maximum variance
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Keeping only the most energetic directions, the original 
dimensionality can be reduced 
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PCA encodes the state space into a low-dimensional manifold 
using features for which transport equations can be solved
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PCA encodes the state space into a low-dimensional manifold 
using features for which transport equations can be solved
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The direct reconstruction of the chemical source terms from the 
reconstructed state space is affected by non-linear error propagation

20

Error in Y
Er

ro
r i

n 
S y

, S
z

Zq
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A non-linear mapping (regression) can be used to encode the 
non-linear relationship between state-space and sources
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PC source term mapping using supervised non-linear 
regression algorithms
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Regression Splines
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GPR - Gaussian Process Regression
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M.R. Malik, B.J. Isaac, A. Coussement, P.J. Smith, A. Parente, Combust Flame 187 (2018) 30-41.
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2. Parameterisation by 
PCA-GPR/ANN/…

Applications of the PCA-GPR framework 
1. Training data

3. Multi-scale simulations
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PCA models from simple reactors can be used on complex 
configurations

A. Coussement, B. Isaac, O. Gicquel and A. 
Parente, Combust Flame 168 (2016) 83–97.

PC-transport model trained on a single 
laminar flame and used to predict eight 
syngas, turbulent premixed flames
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PCA models from simple reactors can be used on complex 
configurations
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PCA models from simple reactors can be used on complex 
configurations

94 A. Coussement et al. / Combustion and Flame 168 (2016) 83–97 

Fig. 15. Scatter plots of Y H vs Y CO 2 for case 6, using DNS (left), MG-PCA (center) and score-PCA (right). 
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Fig. 16. Conditional PDF of Y H , Y H 2 O and Y OH for case 7. 
a significant difference between score-PCA and DNS, the analysis 
of the PDFs suggest that the statistics provided by the two simula- 
tions do not differ strongly. The analysis of Y H and Y OH distribution 
indicate that score-PCA is able to capture the two branches behav- 
ior of case 3, using the information contained in the 1-D flame 
only. However, since the combustion regime for case 3 is signif- 
icantly different than a laminar flame, the score-PCA predictions 
are not accurate . 

From the analysis of Y H 2 O distribution, it appears that both 
methods behave well. However, MG-PCA is able to capture the 
first peak around 0.07, providing better results for cases 1, 5, 6 
and 8 (see Figs. 4,12,14,18 respectively), which are all close to the 
flamelet regime in the Borghi diagram ( Fig. 1 ). This confirms, as 
indicated previously, that MG-PCA results in better predictions for 

cases close to the original training dataset. On the other hand, for 
regimes far from the original one, score-PCA is able to better cap- 
ture the deviation from the original manifold , while MG-PCA ap- 
pears constrained to it. This is especially obvious for case 3 and 7, 
which are quite far from the laminar flame used to train the model 
(see Figs. 8 and 16 , respectively). 

In conclusion, both reduced models can provide very accu- 
rate results when the departure from the flamelet regime is not 
severe, representing an attractive alternative to tabulation tech- 
niques as FPI [25] or SLFM [26] . Far from the flamelet regime, 
the score-PCA approach is able to correctly reproduce the de- 
parture of the system from the original manifold, while MG- 
PCA appears to be constrained to that manifold. Interestingly, 
none of the methods produce numerical instabilities, which could 

A. Coussement, B. Isaac, O. Gicquel and A. Parente, Combust Flame 168 (2016) 83–97.

YHCO

YHCO > 10-8

Conditional PDF for selected species, for a case in the thin reaction zones 
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PC-transport (PCA-GPR) simulation of Flames D and F

3D simulation using OpenFOAM

Training data
Database of laminar counter-diffusion flames 
Fuel stream: 25% CH4, 75% air (by vol) 
Unsteady simulations with sinusoidal strain rate 
80,000 observations per variable

Settings 
Turbulence generator: Digital Filter (Klein, 2003) 
2nd order in time, 2nd order space, WALE model 
2 transported variables: Z1 and Z2 (negligible effect of sub grid closure)

Barlow and Frank, 1998

Domain 
0.6m x 0.3m x 0.3m, conical mesh, 3.2M cells, resolution: d/8=0.45mm

28

M. R. Malik, P. Obando Vega, A. Coussement, A. Parente, Proc Comb Inst 38 (2021) 2635-2643.



Complexity increases when going from flame D to flame F
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The PCs can be associated to physically interpretable 
variables

PCA finds the optimal parameterisation with no supervision: generalisation of tabulation methods

PC1: mixture fraction PC2: progress of reaction
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Flame D
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Flame D - conditional averages
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Fig. 3. Conditional averages at different downstream po- 
sitions for the PC basis using major species (PC-GPR –
major) and the basis obtained using the full set of species 
(PC-GPR – all) plotted against the single shot experimen- 
tal data. 

Fig. 2 (a) shows that temperature is overpre- 
dicted on the centerline farther downstream. This 
can be due to an underestimation of the diffu- 
sion/mixing process at the outlet section. Fig. S2 in 
SM shows the same plots for mixture fraction and 
CO 2 . A more signi!cant comparison can be made 
looking at the pro!les of temperature conditioned 
on mixture fraction at axial locations x/D = 60 
and 75 ( x = 432 and 540 mm) shown on Fig. 3 . 
It can be observed that the predicted temperature 
lies well inside the single shot experimental data 
points. 

At x/D = 60 , the temperature agrees quite well 
with the experimental data, both on the lean side 
and near stoichiometry. At x/D = 75 , the temper- 
ature lies slightly outside the single point data. Fig. 
S3 in Supplemental material shows the RMS cen- 
terline pro!les for temperature, mixture fraction 
and species mass fraction. 

Fig. 4 (a) shows the manifold accessed during 
the simulation with major species at t = 1 s , plot- 
ted against the original manifold obtained from 
the training data-set. It can be observed that the 
simulation did not leave the training manifold: all 
the points accessed are bounded inside the original 
training manifold. It is also apparent that most of 
the data is contained near the equilibrium solution, 
showing that for "ame D the simulation did not ex- 
perience signi!cant extinction and re-ignition. 
5.2. Model sensitivity to the chemical mechanism 
and subgrid closure 

The impact of the kinetic mechanism was also 
assessed. The GRI 3.0 mechanism was compared 
to the KEE-58 mechanism [26] . The latter con- 
sists of 17 species and 58 reactions (excluding N 
containing species except N 2 ). The PCA basis was 
once again computed based on the same reduced 
set of species (CH 4 , O 2 , CO 2 , H 2 O and N 2 ). A GPR 
regression was carried out for the entire thermo- 
chemical state-space, and a table was generated us- 
ing the same grid spacing. Fig. 5 shows a compar- 
ison of different axial and radial pro!les using the 

Fig. 4. Scatter plot of the PCA manifold using two PCs: 
the original manifold obtained for the training data-set 
plotted against the one represented during the simulation 
for "ame D (a) and "ame F (b). Points were downsampled 
for clarity. 
GRI 3.0 mechanism and the KEE-58. It can be ob- 
served that overall the GRI performs better than 
the KEE, predicting the temperature and species 
mass fraction peaks more accurately. This suggests 
that the level of accuracy and detail in the kinetic 
mechanism is not lost during the construction of 
the PC-GPR model. Thus, a PC model trained on 
a more detailed mechanism will result in better a 
posteriori predictions. 

The sensitivity to a subgrid closure was also in- 
vestigated. A mean value closure for the !ltered 
PC’s source terms ( S z ) might not be suf!cient, and 
the in"uence of small-scale turbulent "uctuations 
on the large scales must be assessed. Therefore, a 
beta -shaped probability density function ( β-PDF) 
was used to represent the necessary scalar "uctua- 
tions. A transport equation for the mixture fraction 

Please cite this article as: M.R. Malik, P. Obando Vega and A. Coussement et al., Combustion modeling using Principal 
Component Analysis: A posteriori validation on Sandia "ames D, E and F, Proceedings of the Combustion Institute, 
https://doi.org/10.1016/j.proci.2020.07.014 



Flame F
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Flame F - conditional averages

34

M.R. Malik, P. Obando Vega and A. Coussement et al. / Proceedings of the Combustion Institute xxx (xxxx) xxx 7 
ARTICLE IN PRESS 

JID: PROCI [mNS; August 29, 2020;8:4 ] 

0 300 600
x [mm]

200

1100

2000

T 
[K

]
Experimental
GRI 3.0
KEE-58

0 30 60
r [mm]

200

1100

2000

T 
[K

]
0 300 600

x [mm]

0

0.03

0.06

Y
C

O
 [-

]

0 30 60
r [mm]

0

0.03

0.06

Y
C

O
 [-

]

0 300 600
x [mm]

0

0.075

0.15

Y
C

O
2 [-

]

0 30 60
r [mm]

0

0.075

0.15

Y
C

O
2 [-

]

Fig. 5. Comparison between GRI 3.0 and KEE-58 mech- 
anisms on the centerline (left) and at radial location 
x/D = 30 (right) for temperature, CO and CO 2 mass 
fractions. 
variance was used following the approach in [29] . 
Results shown in Supplemental Material (Fig. S4) 
indicate no major in!uence of the subgrid model. 
While the "ltered equations were resolved, the ef- 
fect of the SGS terms appears to be negligible com- 
pared to the resolved part of the !ow due to the 
high resolution. This suggests that z 1 and z 2 are 
well resolved by the relatively "ne grid used. How- 
ever, the effect of subgrid closure should be further 
investigated. 
5.3. Flame F: results and discussion 

To demonstrate the potential of the PC-GPR 
on more challenging cases, a simulation of San- 
dia !ame E and F was carried out. The geometry 
and numerical setup were identical to the ones of 
!ame D. The regression table based on the subset of 
species was used, and only 2 PCs were transported. 
The velocity boundary conditions were adapted to 
match the experimental setup. The simulation was 
run for at least 10 !ow through periods. Only the 
results associated to !ame F are shown in this Sec- 
tion, while Fig. S5 in SM shows the temperature 
and some species mass fraction pro"les on the cen- 
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Fig. 6 shows the comparison between the experi- 
mental and numerical pro"les of temperature and 
selected species mass fraction pro"les on the cen- 

Fig. 6. Flame F: temperature and major species pro"les 
plotted against the experiments – centerline. 
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Fig. 7. Flame F – conditional averages at different down- 
stream positions plotted against the single shot experi- 
mental data. 
terline for !ame F. It can be observed that the PC- 
GPR model can accurately predict the peak and 
the decay in temperature and species mass fraction 
pro"les. Fig. 7 shows the pro"les of temperature 
conditioned on mixture fraction at axial locations 
x/D = 60 and 75 plotted against the single shot 
data. It can be observed that the predicted tempera- 
ture lies well inside the experimental data. The same 
conclusion can also be drawn looking at the pro"les 
in Fig. S6 of the SM, showing the pro"les of condi- 
tional mean of temperature and species mass frac- 
tion on mixture fraction. Furthermore, as expected 
from the experimental data, it can be observed from 
Fig. 4 (b) that !ame F experiences high levels of ex- 
tinction and re-ignition. It is apparent that the re- 
gion of the manifold accessed during the simulation 
is wider compared to the !ame D one, and that the 
data is evenly distributed between the equilibrium 
solution and the extinction region of the manifold. 

Please cite this article as: M.R. Malik, P. Obando Vega and A. Coussement et al., Combustion modeling using Principal 
Component Analysis: A posteriori validation on Sandia !ames D, E and F, Proceedings of the Combustion Institute, 
https://doi.org/10.1016/j.proci.2020.07.014 



Bounds, training manifolds and actual computation

training manifold
actual computation 

Flame D

35

0 0.2 0.4 0.6 0.8 1

Mixture fraction

0

0.5

1

1.5

Z
2

0 0.2 0.4 0.6 0.8 1

Mixture fraction

0

0.5

1

1.5

Z
2

0 0.2 0.4 0.6 0.8 1

Mixture fraction

0

0.5

1

1.5

Z
2

actual computation 
Flame F



Bounds, training manifolds and actual computation

36

6 M.R. Malik, P. Obando Vega and A. Coussement et al. / Proceedings of the Combustion Institute xxx (xxxx) xxx 
ARTICLE IN PRESS 

JID: PROCI [mNS; August 29, 2020;8:4 ] 

0 0.2 0.4
f

200

1200

2200

T 
[K

]

Experimental
PC-GPR - major
PC-GPR - all

x/D = 60

0 0.15 0.3
f

200

1200

2200

T 
[K

]

x/D = 75(a) (b)

Fig. 3. Conditional averages at different downstream po- 
sitions for the PC basis using major species (PC-GPR –
major) and the basis obtained using the full set of species 
(PC-GPR – all) plotted against the single shot experimen- 
tal data. 

Fig. 2 (a) shows that temperature is overpre- 
dicted on the centerline farther downstream. This 
can be due to an underestimation of the diffu- 
sion/mixing process at the outlet section. Fig. S2 in 
SM shows the same plots for mixture fraction and 
CO 2 . A more signi!cant comparison can be made 
looking at the pro!les of temperature conditioned 
on mixture fraction at axial locations x/D = 60 
and 75 ( x = 432 and 540 mm) shown on Fig. 3 . 
It can be observed that the predicted temperature 
lies well inside the single shot experimental data 
points. 

At x/D = 60 , the temperature agrees quite well 
with the experimental data, both on the lean side 
and near stoichiometry. At x/D = 75 , the temper- 
ature lies slightly outside the single point data. Fig. 
S3 in Supplemental material shows the RMS cen- 
terline pro!les for temperature, mixture fraction 
and species mass fraction. 

Fig. 4 (a) shows the manifold accessed during 
the simulation with major species at t = 1 s , plot- 
ted against the original manifold obtained from 
the training data-set. It can be observed that the 
simulation did not leave the training manifold: all 
the points accessed are bounded inside the original 
training manifold. It is also apparent that most of 
the data is contained near the equilibrium solution, 
showing that for "ame D the simulation did not ex- 
perience signi!cant extinction and re-ignition. 
5.2. Model sensitivity to the chemical mechanism 
and subgrid closure 

The impact of the kinetic mechanism was also 
assessed. The GRI 3.0 mechanism was compared 
to the KEE-58 mechanism [26] . The latter con- 
sists of 17 species and 58 reactions (excluding N 
containing species except N 2 ). The PCA basis was 
once again computed based on the same reduced 
set of species (CH 4 , O 2 , CO 2 , H 2 O and N 2 ). A GPR 
regression was carried out for the entire thermo- 
chemical state-space, and a table was generated us- 
ing the same grid spacing. Fig. 5 shows a compar- 
ison of different axial and radial pro!les using the 

Fig. 4. Scatter plot of the PCA manifold using two PCs: 
the original manifold obtained for the training data-set 
plotted against the one represented during the simulation 
for "ame D (a) and "ame F (b). Points were downsampled 
for clarity. 
GRI 3.0 mechanism and the KEE-58. It can be ob- 
served that overall the GRI performs better than 
the KEE, predicting the temperature and species 
mass fraction peaks more accurately. This suggests 
that the level of accuracy and detail in the kinetic 
mechanism is not lost during the construction of 
the PC-GPR model. Thus, a PC model trained on 
a more detailed mechanism will result in better a 
posteriori predictions. 

The sensitivity to a subgrid closure was also in- 
vestigated. A mean value closure for the !ltered 
PC’s source terms ( S z ) might not be suf!cient, and 
the in"uence of small-scale turbulent "uctuations 
on the large scales must be assessed. Therefore, a 
beta -shaped probability density function ( β-PDF) 
was used to represent the necessary scalar "uctua- 
tions. A transport equation for the mixture fraction 
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Figure 1: Schematic overview of training data sets for reduced-order modeling. Those have also been
briefly reviewed in [29]. Figure taken from [29]. We’ll have to request rights from Cambridge University
Press to re-use this figure.

As an illustrative example, we present the governing equations for a zero-dimensional reactor. For an
adiabatic, incompressible zero-dimensional reactor (also referred to as a homogeneous reactor) equations:
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Since a zero-dimensional reactor represents combustion happening in a single point in space, all spatial
derivatives present in Eqs. (2)-(8) vanish.2 In addition, the strained laminar flamelet governing equations
read:
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where � is the scalar dissipation rate and f is the mixture fraction []. In essence, the parameter � models
the strain applied to the flame structure and thus mimics the e↵ect of molecular di↵usion. Mixture fraction
parameterizes the local stoichiometry. Both the zero-dimensional reactor and the flamelet model have the
same state and source vector quantities. Thus, matrices X and S are formed with the same quantities.
Collecting all observations of Yi and of T into a matrix X, and collecting all observations of !i/⇢ and of
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Note, that even though we have removed the nth species mass fraction, the temperature equation still
couples all species through the term �Pn

i=1 hi!i, which represents the heat release rate (HRR).

4 Reduced-order modeling

Add some introduction.

Typically, N � Q, but the magnitude of Q strongly depends on the number of components of the mixture.
In combustion problems, Q can easily reach the order of hundreds when large chemical mechanisms are
used. Thus, from the linear algebra perspective, the matrix X can be of a high rank.

2Now that I think about it, I know it doesn’t make sense to solve momentum equation for a batch reactor, but it should still
mathematically hold (?), and it somehow doesn’t in my head... With the absence of velocity and with the absence of "space", it
seems that we are left with 0 = ⇢

Pn
i=1 Yifi. And RHS isn’t zero in the presence of gravity... Maybe this has something to do with

that it’s also not physically correct to assume mass not occupying any space...
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Sample-Partitioning Adaptive Reduced Chemistry 
Classification of state-space and locally optimal chemical mechanisms
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Our clustering approach relies on local PCA
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Our Local PCA approach combines dimensionality reduction 
and vector quantisation in a single step
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A multi-dimensional point is assigned to the cluster ensuring 
the lowest low-dimensional reconstruction
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The approach is iterative and requires the specification of a 
hyper parameter, the number of clusters
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Application to an unsteady co-flow methane flame 
t=0.03 s t=0.05 s t=0.09 s t=0.15 s
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Relation between the error and the DRGEP threshold
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Relation between the error and the DRGEP threshold
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Extension to transportation fuels: accuracy of on-the-fly 
classification
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Application to an unsteady co-flow n-heptane flame 
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Prediction of soot precursors 
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Extension to transportation fuels: unsteady co-flow n-heptane 
flame 
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172 species and 6,067 reactions



Machine learning for combustion
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