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objective:
separate data into purposeful components
to gain new insight into inherent features

variety of established modal

decomposition methods:

Fast Fourier Transform (F'IF'T)

Singular Value Decomposition (SVD) /
Proper Orthogonal Decomposition (POD)

Dynamic Mode Decomposition (DMD)

... a variety of extensions
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Why do we need alternative methods for turbulent flows?

o

» unsteady dynamics
» non-linear phenomena

» broadband data

> multi-scale interactions

majority of established decomposition

methods fails to capture such characteristics

T

1
: ;n'
o



EMPIRICAL MODE

DECOMPOSITION
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1D univariate EMD introduced in 1998 IMF 1 |
data-driven decomposition based on intrinsic scales IR

modes (IMFs) are sorted with respect to scale size —

basis system dictated by data
- modes adaptively biased towards WWW\MW W\_)
locally dominant frequencies/scales

— IMF 3

ability to process non-linear and unsteady data IMF 2 /W\

shortcomings for fluid dynamics

* improper mode alignment

. aliasing n time-frequeney domain IMF 4

o

* problems of uniqueness

* restricted complexity/dimensionality



2D NOISE-ASSISTED
MULTIVARIATE EMPIRICAL

MODE DECOMPOSITION




21) Noise-Assisted

Multivariate Empirical

Mode Decomposition

process 2D snapshots




21) Noise-Assisted

Multivariate Empirical

Mode Decomposition

process 2D snapshots

find & align common features
within multivariate data, e.g.
several velocity components




2D Noise-Assisted

Multivariate Empirical
Mode Decomposition

process 2D snapshots

find & align common features
within multivariate data, e.g.
several velocity components

improve mode separation and
coherence across decompositions
by variates of Gaussian noise

& Gaussian noise

& Gaussian noise




2D NA-MEMD

FOR TURBULENT FLOWS
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* dynamics of large-scale

* varying field of view

in-cylinder flow

Head

Intake ports ——

Oilinlet ——_

tumble vortex

instantaneous mean field !
can replace ensemble mean "5

J. Knoll, E. Miteling, M. Braun, M. Klaas, & W.
Schroder. Analysis of the in-cylinder flow of a
D1ISI engine using high-speed particle image
velocimetry. LX Laser (2022)
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tran_sonic airfoil buffet
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shock profile

dynamics \‘ h ||I
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C. Lagemann, E. Miteling, M. Klaas, & W.
Schrioder. Analysis of PIV Images of Transonic
Buffet Flow by Recurrent Deep Learning Based
Optical Flow Prediction. LX Laser (2022)
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AL & §

mner-outer interaction

!
v . .
oL outer layer interaction

E. Miteling & W. Schroder. Analysis of spatiotemporal
inner-outer large scale interactions in turbulent channel
flow by multivariate empirical mode decomposition.

Physical Review Fluids 7.3 (2022), p. 034603
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drag reduction mechanism

interaction of secondary
flow field with vortices

modified inner-outer

interaction due to

near-wall ejections

E. Miteling, M. Albers & W. Schroder. How
spanwise travelling transversal surface waves

change the near-wall flow. Journal of Fluid
Mechanics 957 (2023), A30




PHYSICAL MECHANISM BEHIND

ACTIVE DRAG REDUCTION
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How do active drag reduction methods manipulate
the internal flow structure to achieve drag reduction?

= tailor methods to any flow configuration with highest efficiency

turbulent boundary layer flow subjected to
spanwise traveling transveral surface waves

N N 2r . 2m .
Ywan = AT cos /1—_|_Z +Ft with AT =100, AT =3000, Tt =50

Re, = 1500: Acy; = 26.5%

TLx,
Z+

Albers et al. (2020) Flow, Turbulence and Combustion 105, pp. 125-157
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OL: outer layer (logarithmic layer) ‘
R

VoL . )
Interaction

r < -
2D NA- \ large-scale substantial coherence between inner- and

)

MEMD mode outer-layer large scales = “superposition”
\_

NW

NW: inner layer (near-wall region)

Miteling et al. (2020) Physical Review Fluids, 5(11), 114610.
Miteling & W. Schroder (2022) Physical Review Fluids 7.3, p. 034603
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interaction phenomena:

* superposition (5)
— interaction via sweeps (sw)
— interaction via ejections (ej)

OL -
large-scale substantial coherence between inner- and
mode outer-layer large scales = “superposition”
ejection: u’' < 0 50
' sweep: U >
v >0 o <0
................... e
" wall
x+

Miteling et al. (2020) Physical Review Fluids, 5(11), 114610.
Miteling & W. Schroder (2022) Physical Review Fluids 7.3, p. 034603
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degree of inner-outer coherence joint PDF of large-scale velocity
via spatial cross-correlation coefficient fluctuations close to the wall
0.04 .
_ _ _ @
RS st Re] - ~ —,0-,’-"::\. ) SEDACT |
REF 0.61 0.60 0.36
ACT 0.51 0.51 0.52 =

-0.02 |
* overall, less outer-layer impact

on near-wall dynamics (Ry) 0%a 02 0 02 04

* reduced top-down

communication via sweeps (Rgy)

o - T . . .
increased bottom up_mference increased number & intensity of near-wall

related to ejections (Rgj) ejections = balance outer-layer sweeps

—> wall-shear stress reduction

Miteling et al. (2023) Journal of Fluid Mechanics 957 (2023), A30
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introduction of the 2D NA-MEMD for

spatio-temporal turbulent flow analyses

» captures unsteady, non-linear, and
multi-scale phenomena

broad range of applicability

» numerical & experimental data

» internal & external flows

» fundamental turbulence research &
real-world/industry-related cases

example: new insight in physical
mechanism behind active drag reduction




Thank you very much

for your attention!

(Questions?

2D NA-MEMD code




