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Motivations

Motivations

The destabilization of a separated flow

@ The primary instability of a flat plate separated flow is characterized
by a three-dimensional steady and weakly growing eigenmode.

@ On the other hand, laminar separation bubbles show a high
sensitivity to external noise and a strong two-dimensional instability
mechanism known as “flapping”.

@ We would investigate in a linear and non-linear framework:

@ the role of the convective modes with respect to the flapping
phenomenon;
Q@ the mechanism of transition from convective to global instability;
© the influence of topological flow changes on the sgbility behaviour
o L =
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Numerical tools

Direct Numerical Simulation

2D non-dimensional incompressible Navier-Stokes equations

1
wH@ v = -Vt v, &)
vou = 0

where u = (u,v)” is the velocity vector, p is the pressure and Re = Uogd®

v

@ Fractional step method on a staggered

grid.
@ Spatial discretization: centered second ) suction and blowing profile
. SRR EEERE R ESEES ]
o.rder for the linear terms,compact Siasius \IHW - outow
sixth order for the non-linear terms profile convective
(Chu & Fan 1999).
@ Temporal discretization: SR —
Crank—Nicholson for the viscous terms, No slip conditions
third-order low-storage Runge-Kutta
for the non-linear terms.
o 5 - = = 9ac
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Numerical tools
Global model

The instantaneous variables q =

(u,v,p)T are considered as a superposition of
the base flow and of the perturbation § = (@, 9,p)” .
Decomposition of the perturbations in a temporal modes basis

Ny
q(z,y,

>R il y) exp (—iwrt)
k=1

: (2)
where N; is the number of modes, q; are the eigenvectors, wy, are the
0 . oo
eigenvalue problem

complex eigenmodes, and «; is the initial amplitude of each mode

Substituting in the NS equations and a linearizing lead to the following
(A — ika) qk =0

k=1

, yeey Ny (3)
which is discretized with a Chebyshev/Chebyshev spectral method
employing Ny = 850 modes on a 270 x 50 grid, and it is solved with a
shift and invert Arnoldi algorithm using the ARPACK library.
o & = = D



Linear dynamics

Base flow computation

Re =200

Base flows at 150 < Re < 230

@ For subcritical Reynolds
numbers, the base flow is
computed by DNS.

@ For supercritical Reynolds
numbers, the base flow is
computed by a
continuation method
combining the DNS
approach with a Newton
steady-state solver
(Tuckerman & Barkley,
2000).
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Linear dynamics

Asymptotic subcritical dynamics

Global Spectrum at Re=200 .
0 The spectrum is

@ W found to be stable.
Three families of
modes can be
detected, two of
them having a very
low growth rate.
The eigenvectors
corresponding to the
modes on the most
unstable branch, are
reminiscent of the
classical TS modes

20 9 0.0375

0.0225 predicted by a local
0.0075
> 10 001 approach.
-0.025
® o) 0 g --0.04
0100 200 x 300 400 & = = =z oao
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Linear dynamics

Asymptotic supercritical dynamics

A marginal secondary separation
Global spectrum at Re=225 begins to be recovered within the
primary one at Re = 225,
supporting the hypothesis of
Dallmann et al. (1995) that
topological changes in the base
flow could be at the origin of the
onset of unsteadiness in
separation bubbles.

The spectrum is unstable. Its structure is similar to
the one at Re = 200, with 7 slightly unstable modes
whose eigenvectors are reminiscent of the TS modes.
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Linear dynamics

Optimal energy gain

The maximum energy gain at time ¢ over all
possible initial conditions uyg is defined as: 100
E (t) 10°H
G (t) = max . 4
( ) uo#0 B (0) ( ) PREy
1 rL L 9 | ~2 6104
— @ Y (77 [
where E (t) = 5 [ [ (@ +0?) dzdy
10°+
By decomposing the perturbation into the eigenmodes 1 ) )
basis (2), it is possible to rewrite it as 0 500 1000
G(t) = [|F exp(—itA)F 1|3 = ||T|
where Ay ; = 0 wi and F is the Cholesky factor of Maximum energy gain G(¢)
the energy matrix M of components computed with N = 600 modes

for Re = 200. The peak reaches
a maximum of 10, meaning
The maximum gain at time ¢ and the corresponding ug,  that the flow has an high degree
are computed by a singular value decomposition of T'. of non-normality.

Mi; = [ [ (4fd; +0fd;) dedy, 4,5 =1,...,N
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Cherubini, Robinet, De Palma Recovering Flapping Frequency in a Separated Flow



Linear dynamics

Optimal perturbation at Re = 200

Streamwise velocity contours of the
optimal perturbation at ¢ = 0, 200, 400

10 016 @ The initial energy is concentrated
s % -0.2 at the upstream part of the bubble.
o0 200 x 300 400 @ The disturbance is convected
=200 downstream along the separation

% L streamline amplifying itself until

20 065 reaching the reattachment point.
> 025

10 s Py © The perturbation is convected

(- by - 5 L through the attached boundary

layer, where it is damped.

a0 — 15400 — The high amplification is due to the

20 oas local convective KH instability of the
> o1 velocity profiles within the bubble,

-065 leading to a global growth of
0100 200 300 200 * perturbations.
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Linear dynamics

Optimal perturbation at Re = 225

30
20
10

Streamwise velocity contours of the

100 200 300 X 400 500

optimal perturbation at
a0 t = 0,450, 650, 850, 1050

@ The initial energy is concentrated
at the upstream part of the bubble.

=650 © The disturbance is convected
downstream by the mean flow as a
localized wave packet.

SR

© A second wave packet is generated
due to the amplification of the
disturbances carried back by the

S G recirculation bubble.

t =850

t =1050

o F = = DA
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A wave packet cycle is established
asymptotically




Linear dynamics

Dependence of the optimal energy gain on Re

Optimal energy gain at  Re = 190, 200,207, 213, 219, 225. J

1013

@ The first peak value and
the time at which it occurs
increase linearly with
respect to Re

10°

@ Such a linear increase could
be due to the linear
increase of the size of the
bubble with Re, the global
energy growth being due to
the KH amplification at the
separation streamline.

‘ At large times, modulations are
0 500 lOtOO 1500 2000 recovered in the energy gain
curves at all Reynolds numbers.

-
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Flapping at subcritical Reynolds

Flapping frequency

1000 ‘ 20t‘oo ‘

3000

4000

The most unstable modes, w; and ws, having comparable amplification
rate and being associated to similar eigenvectors, interact resulting in a
low-frequency modulation (flapping)

dw, = 0.006 — T = 27 /w,. ~ 1000
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Flapping frequency

Flapping at supercritical Reynolds

For Re > 213, two low-frequencies could be identified in the energy
gain curve, due to the presence of three interacting unstable modes
having very similar amplification rate and eigenvectors.

_g50
10 - T\ =85
16 |
1014 %
10* |
10+
<10%
~ 8
O 10°F
10° -
10* -
10% 4
10°

0 1000

In Figure, at Re = 225, dwr; = wry —wry, = 0.0075, dwr;; = Wry, —wry & 0.02
resulting in the periods T7 = 27 /0wy, &~ 850, 111 = 27 /éwr,, ~ 300
[} [ =
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Flapping frequency

Recovering flapping by DNS at different Reynolds numbers

@ At Re = 225, DNS recover a
stable dynamics. Indeed, two
modulations (77 =~ 1200 and
Trr ~ 350) affect the energy
gain curve when a linear
behaviour is established.

@ At Re = 230, DNS recover
an unstable dynamics. By a
Fourier transform, the two
flapping frequency
(wr =~ 0.006, wrr ~ 0.0017)
as well as their difference are
found. The higher
frequencies correspond to the
unstable global modes of the
spectrum.

10°
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Flapping frequency

Dependence of the flapping frequency with respect to Re

Is there any characteristic scale for the flapping frequency?

Let us consider a Reynolds number based on a fixed length L,

Rej, = Uy L/v, and the corresponding dimensionless frequency
F=1L/§f.

By the eigenvalue analysis,

we find F ~ 1 for any

Rej, < 35000 (Re < 213),

that is the threshold for

50000 55000 o 638600 35000 ]'Elhe onset of the secondary
apping frequency.

- 008 — The values of the flapping

3003 frequencies are well converged
S 0.02 - == g . ) >
0.01 I = g with respect to grid resolution
0 "

N,=260, L=480 N=270, L=480 NF300,L=480  N=270,L=520 and domain lenght

0.5

[m] = = =
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Flapping frequency
Scaling law

Is there any physical explication for the flapping phenomenon?

Hypothesis : the separation, carring back the perturbation in the upstream
part of the bubble, could induce an interaction of modes producing the beating.

@ A characteristic scale could be the time needed by the mean flow to carry
back a wave packet from the reattachment to the separation point:

F l/tL X Ub/Lb
Ly, being the bubble size and U, the base flow velocity within the bubble.

@ L, and Uy vary linearly with respect to Rer, for Rer, < 35000 (Re < 213)
@ As long as Rer < 35000,

p_tn, _

Py _tn, _ U Ly, _ Rer, Rer, _
F1 tL2 Ub1 LbQ R6L1 R6L2

(5)

confirming that the flapping frequency F' is constant with respect to Re.

-
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Flapping frequency

Role of topological changes in the flapping phenomenon (1)

What happens at Rer, = 350007

1.5
-0.05 ~ /E/E
a o
0.1 S S 1w
0.15
g
=10 5

20000 25000 R o 30000 35060
L

@ The secondary flapping frequency appears
@ The frequency F increases with Re

@ U, and Ly do not vary linearly with Re

@ Topological changes appear in the bubble

Could be these events linked?

The inflection of the streamlines
could lead the bubble to split in two
smaller ones, A and B, which could
carry back the perturbations at two
different rates generating two distinct
modulations.

X

— L
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Flapping frequency

Role of topological changes in the flapping phenomenon (2)

How to validate the hypothesis of bubble splitting?

@ The ratio of the size of bubble A with respect
to the size of the bubble B (Lg/La ~ 2.5) is
close to the ratio of the two flapping
frequencies (wrr/wr = 2.7)

10
14
12r Part B Part A
10F
@ For Rey, > 35000 the primary beating is
generated by the part B of the bubble, which
k 1 is smaller than the entire bubble, and is able
to carry back disturbances in a smaller time,

originating a higher primary beating frequency.

0.00Q (‘)O 200 X 00 ‘4 0 o n .

0002k @ More validations need to be carried out,
Oof- N - involving bubbles with different aspect ratio or
0002 \/ geometry-induced-separations (generated by a

bump or a backward-facing step).
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Conclusions

Conclusions

@ The considered separated flow become unstable when a secondary
bubble originate within the primary one, supporting the hypothesis
of Dallmann et al (1995).

@ For Re < 213, a low-frequency beating is found within the flow,
whose value is constant with respect to Re.

@ For Re > 213, when topological changes are recovered on the base
flow, a secondary flapping frequency appears, while the primary one
increases.

@ A scaling law has been developed, based on the assumption that
the oscillations are due to the interaction of the main wave packet
with the perturbations carried upstream by the backflow, explaining
the previous findings.

@ Future works would aim at carry out more validations of such an
hypothesis, for adverse-pressure as well as geometry-induced bubbles.
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