

Numerical simulation of self-sustained flow oscillations

G. Paál

ERCOFTAC Spring Festival 4th May, 2009, Budapest, Hungary

Budapest University of Technology and Economics, Faculty of Mechanical Engineering Department of Hydrodynamic Systems M Ú E G Y E T E M 1 7 8 2 H-1111, Budapest, Műegyetem rkp. 3., Hungary Tel: +36-1-463-16-80 Fax: +36-1-463-30-91 http://www.hds.bme.hu

- Edge tone: basic flow configuration for organ pipes and recorders;
- Good example for self-sustained flows;
- Y-shaped pipe branches, tongue of spiral casing in turbomachines, etc.;
- Good model case for aeroacoustic research;

- Plane jet & wedge-shaped object produces periodic vortex shedding;
- Behaves as a dipole sound source;
- □ Nonlinear phenomena, hysteresis;

Powell, A. – Re-St relationship, stages

Stage I. Re = 200 visualization

Stage II. Re = 400 visualization

Self-sustained oscillations – general scheme

Self sustained oscillations: closed feedback circuits Shear flow (jet or shear layer)

Growing instabilities

Fluctuating force on an object

Acoustic signal (or vorticity) generates new instability wave at the exit

Jet-slot;
Jet-surface;
Jet-ring;
Jet-cylinder;
Jet-hole;
Shear layer-edge;

CFD parameters

- □ laminar, incompressible, 2D flow;
- □ fluid: air@ 25C°
- □ second order spatial and temporal discretization;
- Optimum timestep: determined after extensive studies
 - using time signals, spectra and analytical methods;
- block-structured mesh, careful mesh study;
- □ Total time of run: determined by the frequency resolution.
 - Requirement: about 1% of maximum frequency. In addition
 - ~0.1 s for the transient part which is cut off for the FFT;
- □ Initial condition: no influence;

Selected results for the edge tone I.

Top hat velocity profile

Selected results for the edge tone II.

Parabolic velocity profile

Selected results for the edge tone III.

Selected results for the cavity tone I.

□ Rossiter modes:
$$f_n = \frac{U}{L}(n - \gamma) \cdot \kappa$$
 where γ is a

phase delay and κ is a dimensionless disturbance wave propagation speed;

- Relevant length scale: incoming momentum thickness;
- With increasing speed or cavity length:

Selected results for the cavity tone II.

Selected results for the cavity tone II.

Summary

- Having performed a large amount of accurate simulations, we succeded to reproduce the stages both for the edge tone and the cavity tone;
- Very good agreement was found between experiments, computations and literature in both cases (with the exception of the third stage of the edge tone);
- □ It was demonstrated that the exponent of the hdependence of the edge tone is -1 and not -3/2;
- Several new phenomena were detected, such as the appearance of a "modulating frequency" in the cavity tone case