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Introduction

� Experience with high-order methods on structured grids (SAILOR code)
� Spectral, pseudospectral, compact finite difference 

� LES (Large Eddy simulation) of jet flows, shear flows, combustion, wall 
bounded flows in simple (academic) geometries

� Development of DioGenes code (Discontinuous Galerkin for Navier-Stokes equation)

� Incompressible viscous flow (projection method)

� Unstructured grids (2D and 3D) – quadrilateral and hexahedral elements

� Explicit in time (Runge-Kutta DG, 1-3 order)

� Parallelised (MPI)
� Seperate module – partitioner – developed for organization of communication 

between processors
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Discontinuous Galerkin method (DGM)

� Belongs to the family of FEM (Finite Element) methods, but share some 
properties with FVM (Finite Volume)

� Features:

� Discontinuous basis functions (discontinuity on the element border)

� Numerical flux for coupling of the elements (FVM concept)
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Cavity flow

� Verification of the code 

� Ghia et al. (1982)
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Temporal shear layer

� Simple turbulent flow
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Vorticity isocontours - DGM (80x80, P=1)
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Temporal shear layer

� Evolution of unstable modes

time

time

time

1 11.9t = 1/ 2 22.5t =

Times of max. ampl. (Moser, Rogers, 1993)

CD – 128x128, Re=250
DGM – 80x80, P=1
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Cavity flow (3D)

� Verification of the code 

� Ku et al. (1987)
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Simulation of a round jet
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Simulation of a round jet
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Flow between rotating disks (smooth)
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Flow between rotating disks (smooth)
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� Comparison with DNS and LES data
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Disks with a step
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Summary

� Implementation of DGM has been developed (DioGenes code)
� Full DG treatment of incompressible Navier-Stokes equation (including

diffusion terms and Poisson equation for the pressure)
� Correcteness verified in a number of test cases

� Cavity flow
� Temporal shear layer
� Free, round jet
� Rotating cavity

� Advantages of the new code:
� Can be applied to complex geometries (unstructured grids)
� Due to locality of formulation, parallelisation is very efficient
� The order of the approximation can be locally changed
� Simple implementation of p-adaptation
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