

Częstochowa University of Technology Institute of Thermal Machinery

Witold Elsner, Piotr Warzecha

TRANSITION MODELING IN TURBOMACHINERY FLOWS

Papers:

- 1. PIOTROWSKI W., ELSNER W., DROBNIAK S., Transition Prediction on Turbine Blade Profile with Intermittency Transport Equation, 2010, Trans.ASME J.Turbomach. Vol.132 nr 1
- 2. ELSNER W., WARZECHA P., Modeling of rough wall boundary layers with an intermittency transport model, 2010, TASK QUARTERLY 14 No 3
- 3. PIOTROWSKI W., KUBACKI S., LODEFIER K., ELSNER W., DICK E., Comparison of Two Unsteady Intermittency Models for Bypass Transition Prediction on a Turbine Blade Profile, Flow Turbulence Combust, 2008

Scope of the presentation

- 1. Motivation
- 2. Intermittency Transport model (ITM) basic assumption
- 3. Intermittency Transport model (ITM) modifications to account for a wall roughness >> (ITM _R)
- 4. Calculations of simple flows with rough walls
- 5. Verification of ITM_R procedure for turbine blade with wall roughness
- 6. Some examples of steady and unsteady calculations
- 7. Concluding remarks

Motivation

Influence of artificial roughness

High-loaded

T106 blade

VKI, 2004

The study suggests that such a blade with as-cast surface roughness has a lower loss than a polished one !

It is useful for the designer to have an estimate of the effects of upstream wakes and surface roughness on both heat transfer and aerodynamic performance

Motivation

The blade surfaces varied significantly with time. The types of surfaces could be categorized as:

• erosion (due to prolonged use or hostile operating environments – the surface is typically characterized as having peaks above and valleys below the mean surface level),

- deposits (deposits were typically raised above the mean surface level of the blade),
- corrosion/pitting (small canyons of measuring depths of 250 µm and widths of 5 cm).

(Ellering, 2001)

Rough surfaces are characterized by statistical parameters such as average centerline roughness Ra, which are correlated to the well-defined equivalent sandgrain roughness, k_s

The other measure is nondimensional sandgrain height

$$K_s^+ = \frac{u_\tau k_s}{v}$$

As the roughness height progressively increases I-t transition moves forward on !

There are many various approaches to model transitional flows, but generally Transition Models

- require empirical input for transition onset detection
- are based on non local formulations
- not compatible with modern CFD approaches

Intermittency Transport Model - basic assumptions

Transport Equation for Intermittency Factor (γ)

$$\frac{\partial(\rho\gamma)}{\partial t} + \frac{\partial(\rho U_{j}\gamma)}{\partial x_{j}} = P_{\gamma 1} - E_{\gamma 1} + P_{\gamma 2} - E_{\gamma 2} + \frac{\partial}{\partial x_{j}} \left[\left(\mu + \frac{\mu_{t}}{\sigma_{f}} \right) \frac{\partial\gamma}{\partial x_{j}} \right]$$

Transition Sources

W

$$P_{\gamma 1} = 2 \left(F_{length} \rho \cdot S \cdot [\gamma \cdot F_{onset}]^{0.5} \right) \qquad E_{\gamma 1} = c_{e1} \cdot P_{\gamma 1} \cdot \gamma$$

Destruction/Relaminarization Sources

$$P_{\gamma 2} = 0.06 \cdot \rho \cdot \Omega \cdot \gamma \cdot F_{turb} \qquad E_{\gamma 2} = 50 \cdot P_{\gamma 2} \cdot \gamma$$

The main difference to other intermittency models lies in the formulation of F_{onset}

$$F_{onset} = f(F_{onset_1})$$
(Piotrowski at al., 2007)
$$F_{onset_1} = \frac{\operatorname{Re}_{V}}{2.193 \operatorname{Re}_{\theta}}$$

$$Re_{\theta} = f(\widetilde{R}e_{\theta}) \Longrightarrow \operatorname{Re}_{\theta} = F_{P} \cdot \widetilde{R}e_{\theta}$$

 $\mathbf{Re}_{\theta c}$ and \mathbf{F}_{length} could be correlated to the local transition momentum thickness Reynolds number $\mathbf{Re}_{\theta t}$ obtained from the additional transport equation

Intermittency Transport Model - missing correlations

The key element of the methodology is a relation between $Re_{\theta c}$ and F_{length} and local momentum thickness Reynolds number $Re_{\theta t}$?

Those relations were obtained based on numerical experiment!

$$Re_{\theta c} = f\left(\widetilde{R}e_{\theta t}\right) \implies Re_{\theta c} = F_P \cdot \widetilde{R}e_{\theta t}$$

Intermittency Transport Model - modifications to account for wall roughness (ITM_R)

Introduced modifications:

✓ For turbulent boundary layer: modification of wall boundary condition for ω and for turbulent eddy viscosity (Hellstein&Laine,1997) *a.ok*

$$\mathcal{O}_{w} = \frac{u_{\tau}^{2}}{V} S_{R} \qquad \qquad K_{s}^{+} = \frac{u_{\tau} k_{s}}{V}$$

$$S_{R} = \left[50 / \max(K_{s}^{+}; K_{s \min}^{+})^{2} \quad dla \quad K_{s}^{+} < 25 \qquad \qquad F_{3} = \frac{100}{K_{s}^{+}} \qquad \qquad dla \quad K_{s}^{+} \ge 25 \qquad \qquad F_{3} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad K_{s}^{+} \ge 25 \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad \qquad F_{s} = \frac{100}{K_{s}^{+}} \qquad F_{s} = \frac{10}{K_{s}^{+}} \qquad F_{s} = \frac{10}{K_{s}^{+}} \qquad F_{s} = \frac{10}{K_{s$$

$$\mu_{T} = \frac{a_{1}\rho\kappa}{MAX(A_{1}; |\Omega|F,F_{3})}$$

$$F_{3} = 1 - tanh\left[\left(\frac{150\nu}{\omega d^{2}}\right)^{4}\right]$$

 $(F_3 = 1 \rightarrow 0 \text{ in near wall region})$

Intermittency Transport Model - modifications to account for wall roughness (ITM_R)

Introduced modifications:

✓ For turbulent boundary layer: modification of wall boundary condition for ω and for turbulent eddy viscosity (Hellstein&Laine,1997) $a_{a,\rho k}$

✓ For transitional boundary layer: combination of Re_{θt} transport equation with the onset correlation of Stripf at al. (2008).

The correlation accounts for the effects of roughness height and density as well as turbulence intensity.

Calculations of simple flows with rough walls

Flat plate flow with zero gradient (Halzer, 1974)

copper balls with a diameter of $d_0 = 1.27$ mm equivalent sand roughness $k_s=0.62 \cdot d_0=0.79$ mm Tu=0.4%; U_{∞}=27, 42, 58 m/s

Calculations verified against DEM-TLV (Stripf, 2007) and correlation by Mills and Hang (1983)

11

$$c_f = (3.476 + 0.707 \ln(x/k_s))^{-2.46}$$

Verification of ITM procedure for turbine blade with wall roughness

Condition to induce the response of b.l. (acc. to Zhang, Hodson'04): k_s> 0.15% chord >> HP_01_40b

Verification of ITM procedure for turbine blade with wall roughness

Symbols – experimental data Lines - num. results (Stripf'08) Parameter –Nusselt Number Nu_c

Verification of ITM procedure for turbine blade with wall roughness

Symbols – experimental data Lines - num. results (Stripf'08) Parameter –Nusselt Number Nuc

Symbols – experimental data Lines - own num. results **Parameter – shear stresses** $\tau[Pa]$

Calculations for flat plate with pressure gradient (Lou, Hourmouziadis, 2000)

ERCOFTAC Spring Festival, Gdansk, 12-13 May 2011 ¹⁵

Calculations for flat plate with pressure gradient (Lou, Hourmouziadis, 2000)

Calculations for flat plate with pressure gradient (Lou, Hourmouziadis, 2000)

Influence of surface roughness

Calculations for flat plate with pressure gradient (Lou, Hourmouziadis, 2000)

Velocity distributions for chosen surface roughness

Unsteady calculations of N3-60 blade

Unsteady results: instantaneous solutions Tu_{in}=0.4% and d=4mm

ERCOFTAC Spring Festival, Gdansk, 12-13 May 2011 ¹⁹

Unsteady calculations of N3-60 blade

Concluding remarks

- the ITM procedure with proposed correlations for transition onset and transition length is able to predict the boundary layer development for simply as well as turbine blade test cases
- An approach to calculating roughness effect in the framework of transition model has been presented
- The results of simulations are consistent with experimental data, at least qualitatively
- The methodology needs further tests and evaluations