

The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences

Department of Transonic Flows and Numerical Methods

Transonic Flows Dept. research tools

General research directions

Participation in European research projects

5FP AITEB 6FP AITEB-2 FLIRE7 TLC Coordination UFAST 7FP ERICKA FACTOR

Department of transonic flows and numerical methods

CFD tools:

In-house code **SPARC-** *parallel aerodynamic research code*, obtained from Karlsruhe University (dr. Magagnato)

Fine-Turbo of Numeca from Brussels (prof. Ch. Hirsch) **FLUENT**

FLOWer – aerodynamic code from DLR (German Aerospace Establishment) in Germany, Chimera meshing

Hardware: Academic Computer Centre in Gdansk TASK, INTEL tests HPC clusters in Swindon, UK

Experimental tools

Test Section: $1800mm \times 350mm \times 100mm$ Vacuum Tanks: $120 m^3$ Pump Unit: $2300 + 700 m^3/h$ Evacuation time:5, 20, 35 minBlow down time (100 mm × 100mm throat:)~20 sec.Drying Unit:silica gel, layer of 1 m height
2.5 m diameter; 70 kW heating

system (end temp. 150°C).

Measurement Equipment:

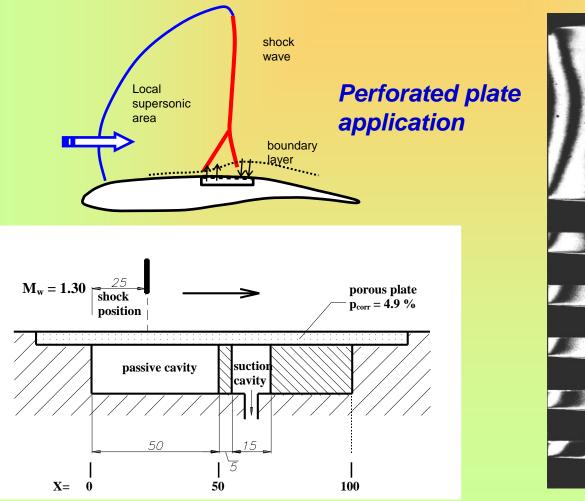
 Pressure: -digital barometer DRUCK, -pressure transducers KULITE and DRUCK -intelligent pressure scanners PSI System 9010, 4 × 16 channels,
 -computer controlled pneumatic probe
 - PSP Pressure Sensitive Paint
 -Schlieren system, SPECLE method
 -Mach-Zehnder interferometer,
 -CCD technology for picture registration
 -PIV system of DANTEC.

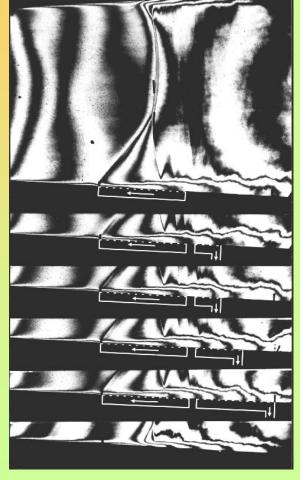
12 May 2011, Gdańsk

Experimental tools

Methods under current implementation:

- Quantitative schlieren system SPECLE method precise digital photography and post processing system – cooperation with prof. N. Fomin form Minsk
- Post-processing of the interferograms elimination of optical errors in finite fringe mode– cooperation with prof. H. Babinsky in Cambridge University
- Pressure Sensitive Paint (PSP) purchase of light source (ultra-violet) and CCD camera (16-bit light intensity), paint formula – cooperation with ONERA in Paris Yves Le'Sant and Marie-Claire Merienne



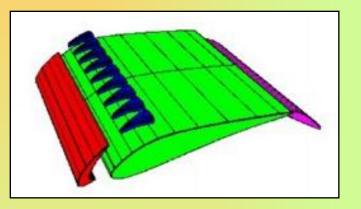

General research directions

- 1) Shock wave boundary layer interaction
- 2) Shock wave induced separation
- 3) Flow control methods counteracting separation EUROSHOCK I / II
- 4) Shock waves interaction (triple point)
- 5) Formation of asymmetric shock system in a nozzle
- 6) Secondary flows and vortical structures analysis
- 7) Air humidity effects on shock wave induced incipient separation
- 8) Condensation process phenomenological models comparison with Molecular Dynamics, effect of inert gases presence
- 9) Lift enhancement methods HELIX subcontractor
- 10) Cooling of gas turbine blades and end walls AITEB, AITEB-2
- 11) Supports interference with model measurements in transonic wind tunnels **FLIRET**
- 12) Aerodynamic study of modern lean combustors **TLC**
- 13) Induction of asymmetric flow field by steam extraction in a turbine
- 14) Unsteady effects in shock wave induced separation UFAST
- 15) New projects in 7th FP ERICKA and FACTOR

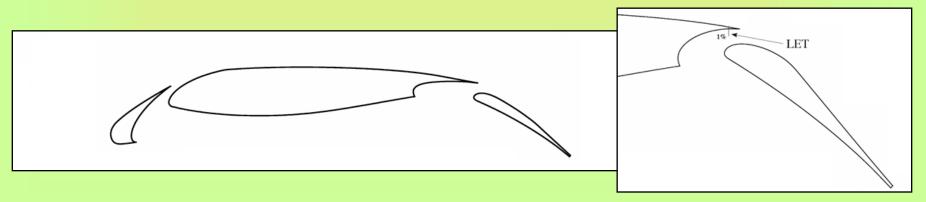
4th FP 1994 – 1999 EUROSHOCK I and II (in Karlsruhe)

12 May 2011, Gdańsk

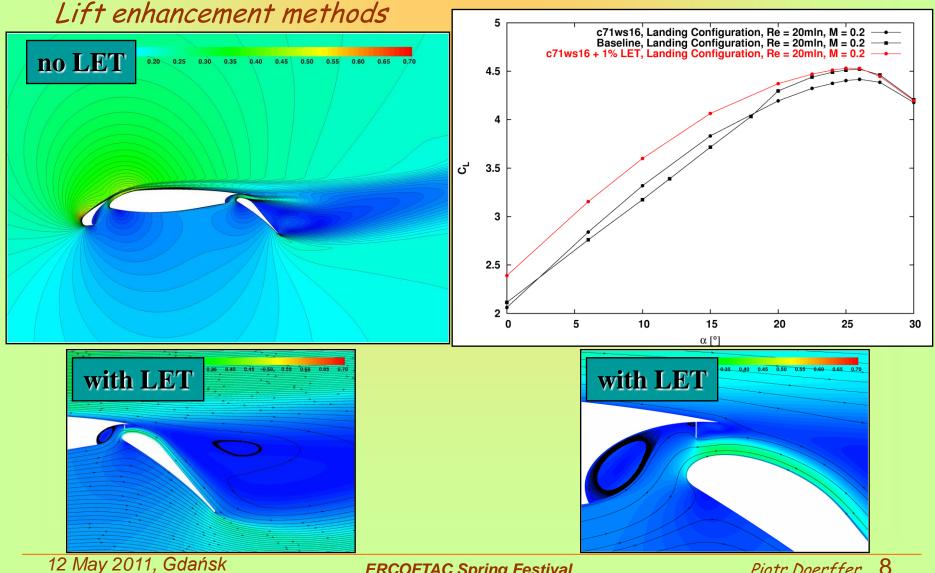
ERCOFTAC Spring Festival



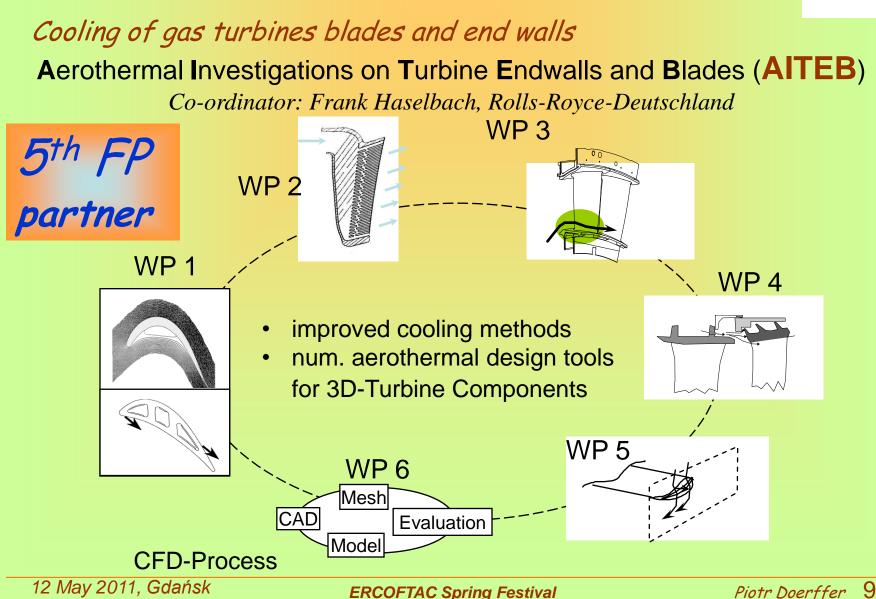
5th FP subcontract


Lift enhancement methods

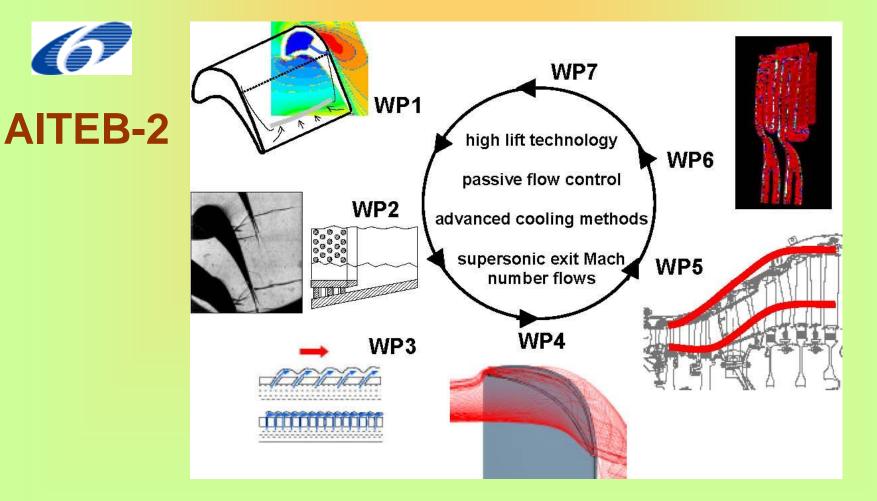
EU project HELIX


LET = Lift-Enhancing Tab

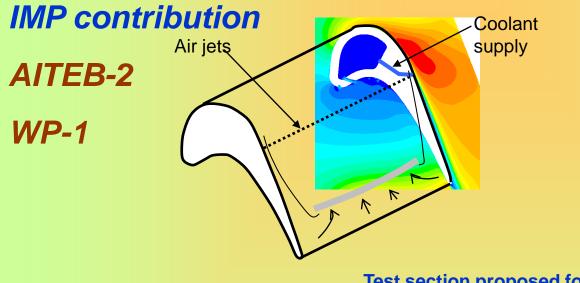
12 May 2011, Gdańsk

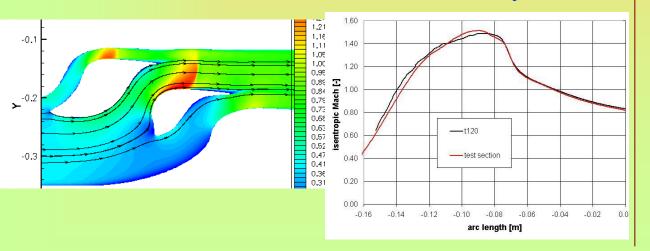

ERCOFTAC Spring Festival

ERCOFTAC Spring Festival



AITEB-2 Partners

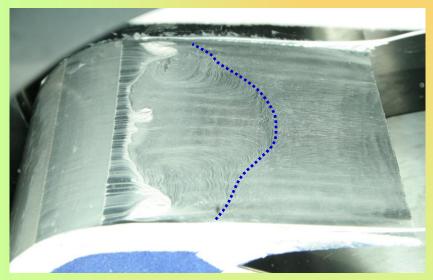

	1	Rolls-Royce Deutschland	RRD	D
	2	Alstom Power	ALST	GB
	3	Avio S.p.A.	AVIO	1
	4	Siemens Ind. Turbomach.	SIEM	GB
	5	MTU Aero Engines	MTU	D
	6	Snecma Moteurs	SN	F
	7	Turbomeca	ТМ	F
	8	Volvo Aero	VAC	SE
	9	German Aerospace Center	DLR	D
	10	Von Karman Institute	VKI	BE
	11	Cambridge Flow Solutions	CFS	GB
	12	Polish Academy of Science	IMP	PL
	13	University of Cambridge	UCAM	GB
	14	University of Karlsruhe	ITS	D
	15	University of Florence	DEF	1
	16	Chalmers Univ. of Techn.	CHD	SE
	17	University of German		
		Armed Forces	UNIBW	D
-	1/01/0011	Cdańak		

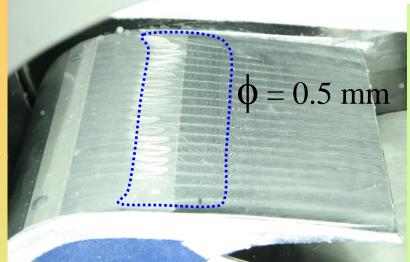

Cooling of gas turbines blades and end walls

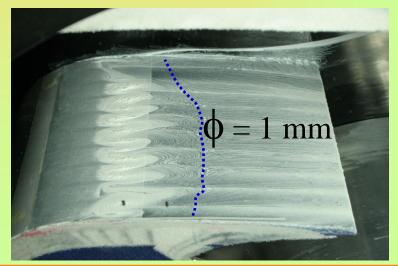
Test section proposed for the basic study

WP3 Effusive cooling

Micro-holes d=0.05 mm


- Is micro-flow modelling important?
- Transpiration flow
 model
- Holes stopping problem?
- Experiment


12 May 2011, Gdańsk


ERCOFTAC Spring Festival

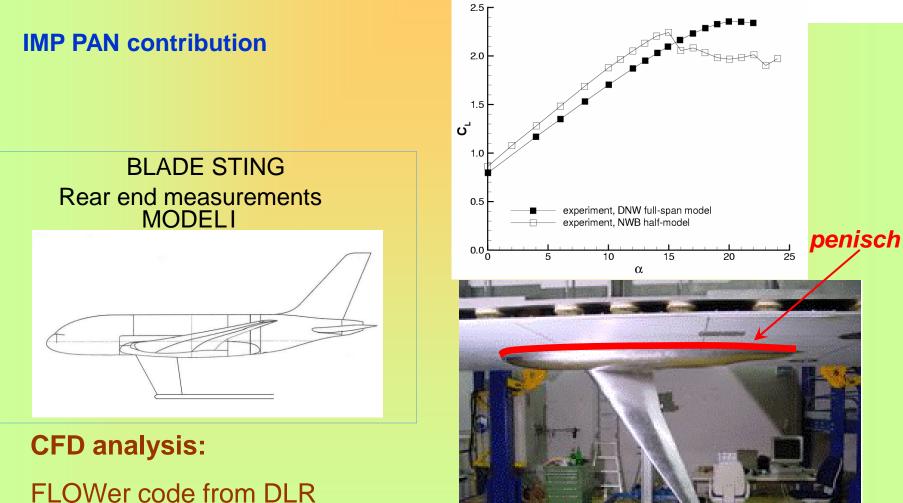
reference

ERCOFTAC Spring Festival

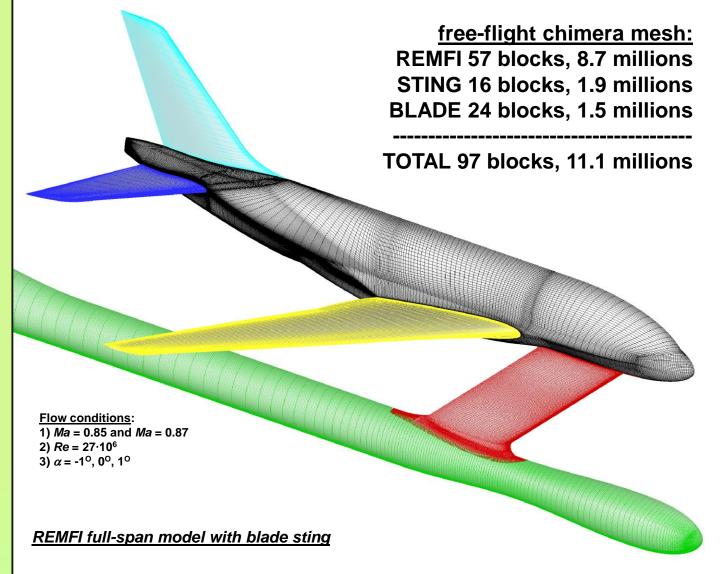
FLIRET

Flight Reynolds Number Testing

1	Airbus Deutschland	A-D	D
2	Airbus France	A-F	F
3	Airbus United Kingdom	A-UK	UK
4	Airbus España	A-E	ES
5	ARA Ltd	ARA	UK
6	Dassault-Aviation	Dass	F
7	DEHARDE	DHD	D
8	DLR	DLR	D
9	ETW	ETW	D
10	Ing.büro Kretzschmar	IBK	D
11	ONERA	Onera	F
12	TsAGI	TsAGI	RU
13	Helsinki Univ. of Techn.	HUT	FIN
14	IMP - PAN	IMP	PL
15	TU Berlin	TUB	D
16	Univ. Stuttgart -IAG	IAG	D

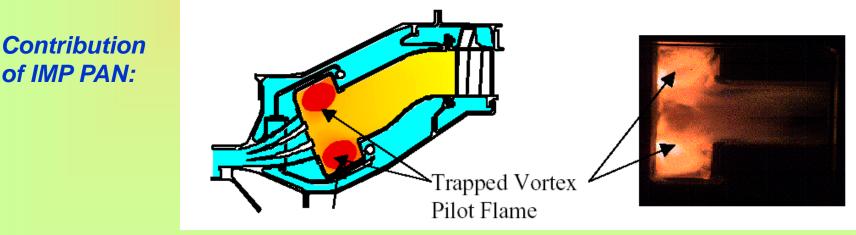

Supports interference with model measurements in transonic wind tunnels

- WP 1 is dedicated to supports for complete wind tunnel models (high speed).
- WP 2 considers the main unsteady effects which play a major role in cryogenic testing: buffet onset and model vibrations (high speed).
- **WP 3** deals with half models for high lift configurations (low speed).
- WP 4 provides the integration which is split into CFD, models, testing and recommendations for the future.



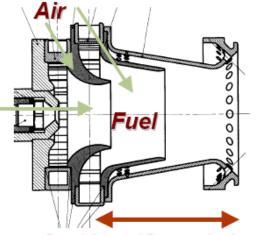
Chimera mesh techniques

12 May 2011, Gdańsk



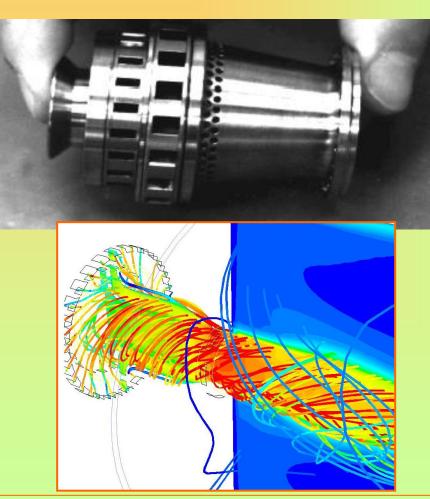
TLC - Towards Lean Combustion Coordination - SNECMA

The subject of TLC focuses on low-emission combustion of liquid fuel in aircraft engine combustors.


Many specific difficulties have to be solved from the physical point of view (auto-ignition, flashback, instabilities, lean extinction limit).

Trapped Vortex Combustor

TVC concept (from the paper NASA/TM-2004-212507)



Premixing and Prevaporisation tube

Contribution of IMP PAN Geometry of LPP duct and combustion chamber

12 May 2011, Gdańsk

ERCOFTAC Spring Festival

Unsteady effects in shock wave induced separation UFAST

Coordination by

IMP PAN

Industry Observer Group:

RRD, Ansys Group Alenia Dassault aviation

No	Full name	Short name	Country	
1	The Szewalski Institute of Fluid Flow Machinery Polish Academy of Sciences	IMP PAN	Poland	
2	CNRS Lab. IUSTI, UMR 6595, Marseille	IUSTI	France	
3	ONERA: (DAFE, DAAP)	ONERA	France	
4	University of Cambridge, Dept. of Engineering	UCAM-DENG	Great Britain	
5	Queens University Belfast, School of Aero. Eng.	QUB	Great Britain	
6	Russian Academy of Science, Siberian Branch, Novosibirsk, Inst. of Theor. App. Mech.	ITAM	Russia	
7	Delft University of Technology, Aerodyn. Lab.	TUD	Holland	
8	Romanian Institute for Aeronautics	INCAS	Romania	
9	University of Southampton, (SES)	SOTON	Great Britain	
10	University of Rome "La Sapienza"	URMLS	Italy	
11	University of Glasgow, Dept. of Aero. Engin.	UG	Great Britain	
12	NUMECA, Belgium, SME	NUMECA	Belgium	
13	de Toulouse	IMFT	France	
14	FORTH/IACM, Found. for Res. and TechnHellas	FORTH	Greece	
15	Ecole Centrale de Lyon	LMFA	France	
16	EADS-M, Deutschland GmbH Military Aircraft	EADS-M	Germany	
17	Institute of Aviation, Warsaw	IoA	Poland	

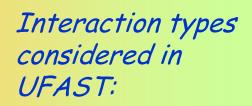
Objectives of UFAST:

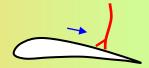
<u>The first objective</u> of the UFAST project is to provide a comprehensive experimental data base

Experiments of "basic"interaction (WP-2)

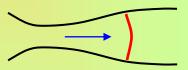
and with flow "control devices" (WP-3) e.g. perforated walls, sublayer vortex generators, streamwise vortex generators, synthetic jets, electrohydrodynamic actuators EHD/MHD

The second objective - application of recent developments in numerical simulations:


RANS/URANS (WP-4),


hybrid RANS-LES and LES (WP-5).

"best-practice guidelines"


<u>The third objective</u>, improvement in physical understanding of unsteady effects in shock induced separation

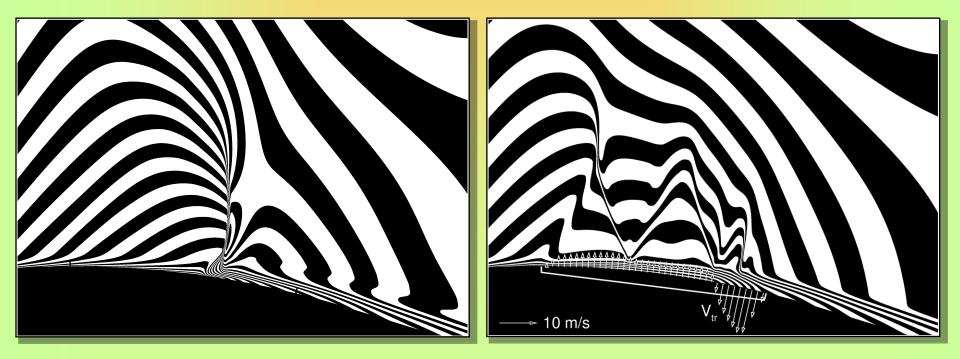
12 May 2011, Gdańsk



Transonic interaction

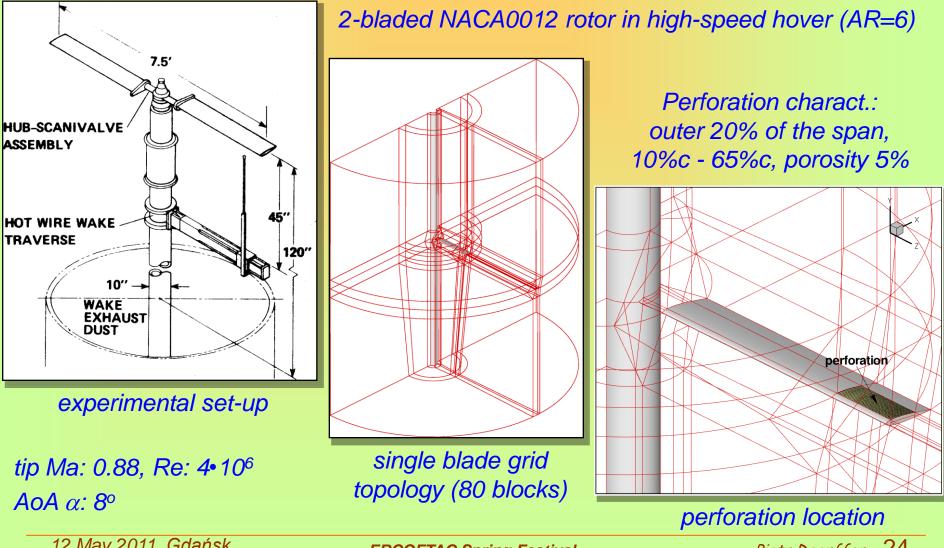
Nozzle flow

Oblique shock reflection

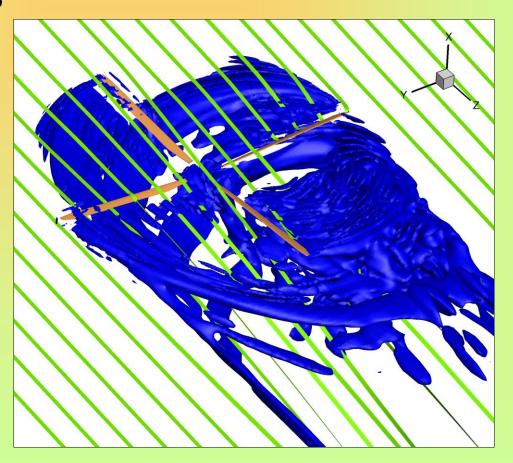


	Transonic interaction	Channel flow	Shock reflection
UFAST			
WP -2 Basic experiments Jean-Paul Dussauge	 1 A) QUB - wall bump B) INCAS - biconvex aerofoil C) ILOT - NACA0012 with aileron 	2 A) ONERA (DAFE)nozzle, forced shock oscillation B) CUED - nozzle, forced shock oscillation C) IMP - nozzle - curved channel	3 A) TUD - M=1.6 B) ITAM - M=2.0 C) IUSTI - M=2.25
WP – 3 Interaction control experiments <i>Holger Babinsky</i>	1 1) QUB - SJ 2) QUB - EHD 3) INCAS - SJ 4) ILOT - pitching aerofoil and aileron	2 1) ONERA - VG, AJVG 2) CUED - SVG 3) IMP - active suction, 4) IMP - AJVG	3 1) ITAM - EHD 2) IUSTI - AJVG
WP -4 RANS, URANS <i>Charles Hirsch</i>	1 LIV – A-1 INCAS – B-3 IMFT – A-1, B-3, C-4	2 LIV - A-1, C-4 FORTH - A-1, B IMP - C-3, C-4 NUMECA - B LMFA - C3	3 URLMS - A NUMECA - C IMFT - C LMFA - A, B UAN - B, C2
WP -5 Hybrid, RANS/LES, LES I George Barakos	1 LIV - A-1, C-4 INCAS - B-3 IMFT - A-1, B-3, C-4 EADS-M - B	2 LIV - A-1, C-4 FORTH - A-1, B IMP - C-4 NUMECA - B, C-4	3 SOTON – A, B, C NUMECA- C IMFT - C URLMS – A ONERA (DAAP) – C-2

12 May 2011, Gdańsk


Application of the Passive Control of Shock Wave to the Reduction of High-Speed Impulsive Noise

Model helicopter rotor in hover (F. X. Caradonna and C. Tung, NASA 1981)


High velocity flight – M = 0.22

Blade tip velocity M = 0.66

FLOWER (DLR)

k-ω (Linear Expicit Algebr. stress mod.)

No blade elastic deformation but full articulation included

ERICKA - Engine Representative Internal Cooling Knowledge and Applications

FACTOR - Full Aero-thermal Combustor – Turbine interactiOn Research

Follow-up project of UFAST – Effect of transition location on the shock wave induced separation – external and internal aerodynamics

THE PEOPLE PROGRAMME – Marie-Curie

Industry-Academia Partnerships and Pathways STA-DY-WI-CO (LMS Belgium - IMP PAN Poland) STAtic and DYnamic piezo-driven StreamWIse vortex generators for active flow Control

Initial Training Networks IMESCON Innovative MEthods of Separated Flow CONtrol in Aeronautics

12 May 2011, Gdańsk

ERCOFTAC Spring Festival